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We now start considering the basic curve elements to be used throughout this course; poly-
nomial curves and piecewise polynomial curves. These types of curves have component
functions that are polynomial functions or piecewise polynomial functions. One of the rea-
sons for the use of polynomial curves (and later polynomial surfaces) in geometric modelling
is that the are easy to calculate, and numerically efficient to calculate, at least once put in
the correct form. A second reason is the great availability of results on polynomials; they
have mathematically studied for centuries.

An nth degree polynomial in ¢ is an expression involving a series of powers of the variable
t multiplied by a series of coefficients, that is

f(t):a0+a1t+a2t2+--~ant”.

The degree (or order) of the polynomial is typically the highest power with a non-zero
coefficient. However, for our purposes, we use a slightly different notion of the order of a
polynomial. We will typically fix the highest power of the polynomials, and thus consider
a nth degree polynomial to mean the polynomial involves powers of ¢ that are at most n,
meaning that a, can equal zero and it is still considered an nth degree polynomial. This
allows us to consider a quadratic polynomial, ag + a;t + as t? as a cubic polynomial with
asz = 0. But, the real advantage is that it allows us to consider the space of polynomials of
degree n as a vector space of dimension n + 1, and apply the techniques and computational
power of linear algebra to polynomial curves.

A polynomial curve is a vector valued function whose coordinate functions are polynomials,
that is for a polynomial curve of degree n in the zy-plane the z component and the y
component functions are polynomials of degree n,

z(t)=ap+art+ast’ +--Fa,t™ and y(t) =bo+bit+byt? + -+, t"

Exploiting vector algebra, we can represent a polynomial curve c(t) of degree n as a single
polynomial of degree n with vector coefficients,

c(t):a0+a1t+a2t2+~~+ant”.

With this formulation, much of the notation is simplified. Moreover, this formulation easily
allows us to apply the techniques of linear algebra to solve problems.

We will also start considering the idea of piecewise polynomial curves. These curves are
obtained by joining one polynomial curve to another polynomial curve either in a continuous
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manner or a smooth manner, for instance

al +alt+alt?+.-.-+alt" for to <t <ty
al+ajt+ait’+---+aZt" for t) <t <ty

al' +al't+alt?+ - +amt" forty,_1 <t <ty

The curve ¢(t) defined above uses the same degree of polynomials for each segment. This
is not necessary, but is a notational convenience as we can increase the degree without
changing the curve since we will allow a¥ = 0.

For piecewise polynomial curves, it will be important to consider the order of smoothness
of the curve. The order of smoothness of the curve is based on the number of derivatives
that are defined at the point where the curves are joined. When considering the order of
smoothness of the curve, it is important to distinguish whether or not we are considering
parametric smoothness or geometric smoothness. Parametric smoothness means the deriva-
tives of the polynomial agree in the parameter ¢. Geometric smoothness means that with
respect to the arc-length parameter the curve is parametrically smooth. For geometric mod-
elling, geometric smoothness is important because the arc-length parameter is the natural
parameter in geometry, and thus the natural parameter in designing objects. Geometric
smoothness adds more freedom to the designer, with the extra cost of algorithm complexity
as the arc-length parameter is not the natural parameter for computations with polynomial
curves.

The remainder of today’s notes concerns quadratic polynomial curves (parabolic arcs). We
will solve all the motivating problems with parabolic arcs, in detail. Tomorrow, we will
consider cubic curves in some generality looking at an interpolation problem. In considering,
cubic curves, we will also look at the problem of degree elevation and degree reduction, and
the construction of piecewise cubic curves. After cubic curves, we will consider how the
solution of the motivating problems with parabolic curves and cubic curves generalizes to
higher-order polynomials curves.

7.1 Parabolic Arcs and Piecewise Parabolic Arcs

We begin our discussion of polynomial curves and piecewise polynomial curves with parabolic
arcs. Parabolic arcs are standardly represented as nondegenerate quadratic curves, that is
second order polynomial curves. The nondegeneracy condition ensures that the quadratic
curve is not a straight line. Unlike other polynomial curves, parabolas have a well-defined
geometric definition. A parabola is the set of points P in a plane that are equally distance
from a given line L (called the directrix) and a given point F' (called the focus), see figure
below. This is definition from Euclidean geometry. Parabolas also naturally arise when
considering conic sections, the intersection of plane with a cone, which we encounter later
in these notes when we consider projective geometry and rational quadratic curves.

It is relatively easily application of basic ideas in analytic geometry to show that a parabola
is described by the equation y = az? + c. To explain the derivation of this formula from the
geometric definition. Let @ be the intersection of the directrix and the line perpendicular to
the directrix through F and let V' (the vertex of the parabola) be the point on the parabola
on the line segment QF, as in the diagram above and below. The quantity = is then the
distance between a point X on the directrix and the point @), and y is the distance on
a perpendicular to the directrix to the parabola. From the geometric definition, ¢ must
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P = point on parabola
F =focus

L = directrix

Figure 1: Classical Description of a Parabola

then be half the distance between @ and F. To derive the relation y = az? + ¢, draw
a line L’ parallel to the directrix passing through a point P on the parabola. Let Q' be
the intersection of this line and the extended line QF (see diagram below). The distance
between @’ and F is then |y — 2¢|, and the distance between Q" and P is x. Applying the
Pythagorean theorem on the triangle F'Q'P then yields

[FQ'|> +|Q'P|” = |PF|> = |[PX|?
ly — 20\2 + 2% =9

Expanding and simplifying then yields y? — 4cy + 4¢? + 22 = y? from which we have 4cy =
1
4c

2244t ory=+ta2?+c

1QX|=1Q'P|=x

| PX|=| PF|=y
|FQ|=2¢c
IQ'F|=|2c-yl|

1Q'P|*+|Q'F| =|PF|”
x + |2¢c-y|®? = ¥
x’ + 4c’-4cy = 0

y = ax’+c

where a=1/(4c)

Figure 2: Converting Classical Description to Analytic Equation

The general form of a parabola as a vector valued function can be obtained from the y =
ax?+-c by using vectors to perform the geometric construction described above. The directrix
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may be described as X = X+ At. A line perpendicular to the directrix through a point X;
is described as X1+ J(A) s where J(A) is a the rotation of A by a right angle. (If A = [a1, a2]
then J(A) = [—az,a1].) We can find the point @ by solving Xo + At = F + J(A) s, and
then using @) to describe the point P = Q+ Ax+ J(A) y, where A is a unit vector. We have
P=Q+Ax+ J(A)(az?+c)or P = (Q+ J(A)c) + Az + aJ(A) 2% which is of the form
c(t) = ag +a; t +ast?. It is worth noting that any parabola can be put in vector-form.

7.2 Constructing a Parabola

The geometric definition gives one method for constructing a parabola, but in geometric
modelling we are more likely to want to construct a parabolic arc starting at one point and
ending at another. We need additional information to construct a parabolic arc passing
through the two endpoints of the parabolic arc. But how much more information is needed
and what information is useful to prescribe?

The geometric construction provides a clue as to how much more information is needed.
The focus-directrix definition of a parabola requires three non-collinear points; a focus, and
two points to define the directrix. However, one can use less information to describe the
directrix as a line can technically be defined by one point and a direction (a unit vector).
Therefore, to construct a parabolic arc, we need to specify at least two points (one to specify
the focus and one the directrix), a unit vector (to specify the directrix completely) and two
numbers to specify the starting point and ending point on the segment. This means at a
minimum counting the amount of information in terms of coordinates and numbers, we need
to specify seven values a little more than three points in a plane. In particular, we can not
specify only three points and get a unique parabola.

It is very important to note that there is not one unique parabola through any three points.
A basic theorem in projective geometry states that five points are required to form a conic
section, either a parabola, an ellipse or a hyperbola, but which type of conic section is not
known until all five points are known. We note here that there is actually a one parameter
family of parabolas that pass through any three points, as we shall see when we discuss the
parametric form of the interpolation problem.

An elementary construction of a parabola can be achieved from three points by exploiting
some facts about the geometry of a parabola. This construction fixes one of the parabolas
by using some specific properties of parabolas. Specifically, we use the fact there are no
parallel tangent lines to a parabola; given a line [ there is a unique point on a parabola
with a tangent line parallel to [, at least as long as [ is not perpendicular to the directrix.
A parabola can be then uniquely determined by specifying two points on the parabola and
the point of intersection of the tangent lines at these points. Notice that these three points
must be non-collinear and form a triangle if they are to create a parabola.

To construct a parabola in this manner, we let pg, p1, p2 be the vertices of the triangle,
with pg and ps the given points on the parabola and p; the intersection of the tangents at
Po and ps2. The tangent lines at pg and ps are described by the lines from pg to p; and p;
to pa by

lo(t)=(1—t)po+tp1 and Ii(t) = (1 —1t)p1 +tp2.

A parabola can be obtained by defining
c(t) = (1= t)lo(t) +th(t) = (1 —t)* po + 2t(1 — ) p1 + t* P2

Notice that, when ¢t = 0 we have ¢(0) = pp and when ¢t = 1 we have ¢(1) = p2. Moreover,
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differentiating to construct the tangent lines, we have
() =2(1 —t) (p1 — Po) + 2t (P2 — P1)

so the tangent vectors at pg and py are 2(p; — po) and 2(p2 — p1) respectively as desired.
In particular, we find that p; is the intersection of the two tangent lines.

P;

P>
Py

Figure 3: A Geometric Construction from Three Points

This construction is a precursor of a more general construction that we will be using in the
remainder of the course, called de Casteljau’s algorithm. The general construction entailed
in de Casteljau’s algorithm will be our first method that using points that are not directly
specifying geometric information, but controls the construction. At this moment, the point
P1 is not interpolated directly but does encode geometric information that is interpolated
(the prescribed tangent lines) at pg and po.

It should be noted that this construction though seemingly violating the information re-
quirements set out in the first paragraphs of this subsection does not violate the information
requirements. There are three points plus two parameters encoded into the parameteriza-
tion. This is in addition to the fact that one point specifies the tangent line at the other
two points, which adds additional information encoded in the construction.

7.3 Interpolating Parabolas

Let us now consider the problem of determining a parabola that passes through a fixed
number of points. The first question that must be considered is the number of points
needed. We need three points to determine a parabola. This is a direct result of the
algebraic description of a parabola with three unknown vectors. Each vector is determined
by one point.

The vector valued description of parabola is a parametric description, so the correct problem
is to solve a parametric interpolation problem. Give three points and three parameters, we
thus seek the parameteric description of a parabola c(t) with ¢(ty) = po, ¢(t1) = p1, and
¢(ta) = pa. Writing the equations, we have
po = agp +ai to + as t]
p1 =ag+ait; +ast]
P2 = ag +aj ts + as t5
Solving these equations for ag, a; and as, we apply Gaussian elimination to remove agy by
looking at the expressions for pg — p1 and pg — p2;
Po— P1 = a1 (to — t1) +as (t§ — t7)
po — P2 = a1 (o — t2) + az (1§ — 13)
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Factoring these equations, we have
Po — P1 = (to — t1) (a1 +az (to +t1))
Po — P2 = (to — t2) (a1 + az (to + t2))
We can rewrite these equations and eliminate a; to get

Po—P1  Po—P2
to—t to —t2

=a (t; — t2)

Therefore, simplifying the left-hand side of the above equation, we have

1 1 1
+ +
(to —t1)(to — t2) po (t1 —to)(t1 — t2) P1 (ta —to)(t2 — to

Back-substituting yields

az = )Pz-

A — — t1 +to _ to + to _ t1 +to
P -t~ 2) 0T (t—to) (b —t2) D (t2—to)(t2 — 1)
and
. t1to tots toty
ag =

)Po-l-( P1+(

(to —t1)(to — t2 ty —to)(t1 — t2)
Therefore the interpolating polynomial can be written as

c(t) = L3(t) po + L3 (t) p1 + L3(t) p2

ta —to)(t2 — to) Pz

with
tita — (t1 +t2)t+t2  (t—t1)(t —ta)
Lot = (to—t1)(to —t2) (o —t1)(to — to)
L3(t) = tota — (to+t2)t +°  (t—to)(t —t2)
! (t1 —to)(t1 — t2) (t1 —to)(t1 — t2)
2(t) = totr — (to+t)t +° _ (t—to)(t —t1)
2 (t2 —to)(t2 — to) (ta —to)(t2 — t1)

Notice that the coefficients of pg, p1, p2 are quadratic polynomials. Moreover the coefficient
function L?(t) of p; has the property that

L2(t-)— 1 ifi=j,
710 otherwise.

The 2 in the functions above stand for 2nd order polynomial. These basis functions generalize
to higher order polynomials (to be discussed later). Assuming that ¢ty < t; < to, the basis
functions L?(t) graphs appear somewhat like in the diagram below.

One can use matrix algebra to solve the same system of equations by first writing the original
system in matrix form as

1 1 1
[P0 P1 P2 =[a0 a1 & [ty 1 o
tg ti 3

The solution is then obtained as

11 177!

a0 a1 azl=[po p1 p2] [P0 P1 P2] =[a0 ai ag] [ty t1 1o
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t0 151 t2

Figure 4: Basis Functions L?(¢) for Interpolating Parabolas

Provided that all the parameter values are different the matrix is invertible. The parabola
can thus be represented as

1

1 1 1] 1
ct)=[po P1 P2| |to t1 to
2 13 3 t2

In this formulation, one only has to invert the matrix. The solution arrived at yields the same
answer (from a theoretical point of view) as the basis function formulation. The advantage
of the matrix point of view is that in generalizes easily to higher degree equations, as we
really solved the matrix equation P = AT where P is the matrix of data points, A is the
matrix of coefficients, and T is the matrix of time values raised to the appropriate powers;
the column vectors of T" are [1,¢,t2,--- , "] for an nth order polynomial.

We note that unlike the cases of straight lines and circular curves considered in the previous
chapter different parameter values yield different parabolas. This is an important revelation,
as the curve is formed from the parameterization not the points.

Figure 5: Different Parabolas Through the Same Points
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7.4 Piecewise Parabolic Curves

The elementary construction from two points on the parabola and the point of intersection of
the tangent lines at these two points allows one to construct a curve consisting or a collection
of parabolic arcs, by specifying a list of an odd number of points {p;}?", and forming the
triangles po;_opo;_1p2; where ¢ = 1,2,--- ,n. The number n is the number of parabolic
segments used in the curve. In general, such a construction will not yield a smooth curve
as a discernable angle will be generated at the joint points py; unless the points ps;_1, pa;,
p2i4+1 are collinear with py; between po;—1 and po;+1. The condition that pa;—1, P2, P2it1
are collinear with po; between po;_1 and po; 1 ensures that there is a well-defined tangent

line at each point on the curve, and thus the curve is geometrically smooth (of order 1).

Figure 6: Smooth Curve Constructed out of Parabolic Arcs

Note the derivative is not necessarily defined at the joint point pgs, with k =1,2,---  (n—1)
even when po;_1, Pa;, P2i+1 are collinear with py; between po; 1 and po;11. Therefore a
piecewise parabolic curve is not necessarily parametrically smooth. To show this, consider
a piecewise parabolic curve c(t) of two segments with ¢(0) = pg, ¢(1) = p2 and ¢(2) =
p4. A unique tangent line is implied by having p;, ps, p3 collinear, but this condition for
geometric smoothness does not imply parametric smoothness for by the calculations above
the derivative when ¢ = 1 are given by
lim /() =2(p2 —p1) and  lim c'(t) = 2(p3 — p2).
t—>1+ t—>1-

These quantities are equal only if p; = %(pg +p1), that is if p; is the midpoint of the segment
p1ps. However, because p1, pa, ps are collinear with pa between p; and ps, the vectors ps —p;
and p3 — po are parallel and point in the same direction which implies that the tangent line
at p; is defined even the derivative is not. This is an aspect that is important in geometric
modelling and in the construction algorithms we will consider later in the course.

It is worth noting that there is a parameterization of the parabola that makes the piecewise
curve parametrically smooth. One needs to consider the generic problem ¢(ty) = po, ¢(t1) =
p2, -+, ¢(tn) = pan, and then choose values of t; that make the curve differentiable when
t=1t; withi=1,...,n — 1. This is left as an exercise.

7.5 Geometric Smoothness versus Parametric Smoothness

We have just showed the difference between parametric smoothness and geometric smooth-
ness for parabola segments using the first derivative. This is smoothness of order one because
we have only used the first derivative. There are higher degrees of smoothness associated
with the higher order derivatives. To distinguish between these different types of smooth-
ness, we use C* to represent parametric smoothness of order k and G* to represent geometric
smoothness of order k.
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We note that in general geometric smoothness allows extra degrees of freedom over para-
metric smoothness. For piecewise parabolic curve consisting of n parabolic arcs, let {p;}
i=0,1,2,---,2n be the control points. A curve that is C! (parametrically smooth) has the
control points po; completely free plus the control point p;. The remaining control points
are determined by the C' condition P2i+1 — P2; = P2; — P2i—1- Lhis means that p; is com-
pletely free, but the remaining control points are fixed. A curve that is G! (geometrically
smooth) has the control points py; completely free, and the remaining control points are
only constrained to by the condition that po;_1, po2;, p2;+1 are collinear with po; between
p2i—1 and po;+1. This means that p; is again completely free, but the remaining control
points have one degree of freedom as they are constrained to a line but the position is not
determined exactly.

7.6 Fitting Parabolas to Data

So far, we have discussed various methods for creating parabolas, mainly through an inter-
polation process. In this section, we want to consider a different problem; finding a parabola
that fits a set of data points. We accomplish this by applying the method of least squares
to finding the parabola that is closest to a set of data.

We concentrate on the parametric form of this problem. Given data (¢;,¢;) with i =
0,1,2,--- ,n find the parabola that is the best fits the data. This means find the “best”
solution to set of linear equations

Qo = ao + ay to + az 5

q1:a0+a1t1+a+2t%
P=iit
Gn = ao + a1 t, + agt +n’

We apply the method of least squares to solve this problem. The problem involves the
matrix version of the method of least squares. Let @@ be the matrix with row vectors ¢;, A
be the matrix with row vectors a; and 7' be the matrix with row vectors [1,¢;,t?]". We then
apply the method of least squares to solve

R=TA
for A. Therefore, we multiply by T on the right obtaining
T'Q=(T'T)A

The matrix 7% T is a square matrix (3 x 3) and invertible, therefore A = (T* T)~! T* Q. The
fact that it is invertible is a result of the vectors [1,%;,t?] linearly independent as long as t;
are distinct.

EXAMPLE: Consider the data points with parameter values ¢t and s in the table
below.

t | -1.00 | 0.50 | 1.20 | 1.80 | 2.50
z | -0.79 | 1.18 | 1.29 | 0.93 | 0.16
y | 238 | 0.94 | 0.61 | 0.55 | 0.68
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To find the parabola in the form c(t) = ag + a; t + as 2, we need to apply least
squares to solve the system

—0.79 2.38] [1.00 —1.00 1.00

1.18 0.94 1.00 0.50 0.25| |ap
1.29 0.61| = [1.00 1.20 1.44| |a;
0.93 0.55 1.00 1.80 3.24| |a»

0.16  0.68] 11.00  2.50 6.25

Solving for ag, a;, as by the method of least squares we find,

ap]  [077  1.29
ai| = | 1.04 —0.85
as| |-0.52 0.2

Thus, the parabola is 2 = 0.77 4+ 1.04t — 0.52¢? and y = 1.29 — 0.85 2 4 0.24 2.

In a data fitting problem, generally one is not given the parameter values. The parameter
values must be chosen. There are several responsible choices. The first is to choose equally
spaced parameter values, choose a increment value At, and define t; = ¢y + iAt for i =
1,2,--- ,n. A second reasonable choice is to use the chord length values. The chord lengths
are the distance d; = ||pi+1 — pil|- Set to = 0 and inductively define ¢;41 = t; + d;. A
justification for using chord length is that it takes into account some of the natural geometry
of the data points. A third possibility is to use centripetal spacing; set ty = 0 and inductively
define t;11 =t; + d; /2, Centripetal spacing will smooth out variations in the centripetal (or
normal) acceleration of the curve.

EXAMPLE: Consider the problem of finding a parabola to the data below (points
only)

z | -0.26 | 0.80 | 2.40 | 3.34 | 3.92 | 5.76 | 7.01 | 8.33
y | 047 | -0.28 | -0.22 | -0.23 | -0.08 | 0.52 | 0.82 | 0.72

In the diagrams below, we show the best fit parabolas obtained by least squares
using the equally spaced parameters and chord length parameters.

Figure 7: Fitted Parabolas, Left Figure uses Equally Spaced Parameter Values and Right
Figure uses Chord Length Parameter Values
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It should be noted that one can always normalize the parameter values so that tyg = 0
and ¢, = 1, by defining the normalized parameter s = (t — ¢9)/(t,, — to). The normalized
parameter will yield the same curve (up to round-off error). The advantage of the normalized
parameter is that it specifies the range of the parameter to the fixed interval 0 < s < 1.
An additional advantage is that some construction algorithms (Bezier curves in particular)
work with normalized parameters.

7.7 Exercises

1. (Computational) Find a parametric equation of a parabola that

(a)
(b)

()
(d)

passes through the points [1,1], [2,3] and [3,2] at t =0,¢ =1, and t = 3

passes through [1,2] and [3,4] at t = 0 and ¢t = 2 and has tangent vector [4, 3] at
t=0.

passes through [1,2] and [3,4] at ¢ = 0 and ¢t = 2 and has tangent vector [4, 3] at
t=1.

passes through [3,1] at ¢ = 0 and has tangent vectors [2,2] and [3,5] at t = 0 and
t=1.

2. (Computational) Given the control points

i | x Y
010120
112510
2130120
314.01 4.0
4130150

Construct the piecewise parabolic curve from these control points using the geo-
metric construction with ¢(0) = [1,2], ¢(1) = [3,2] and ¢(2) = [3, 5]

Show that this curve is geometrically smooth but not parameterically smooth.

Find a change of parameterization that makes the curve parametrically smooth,
that is e(to) = [1,2], c(t1) = [3,2] and c(t2) = [3, 5]

Move the control point [3,2] so that the curve constructed from the geometric
algorithm is parametrically smooth.

3. (Interactive) Complete the interactive exercises associated with piecewise parabolic
curves.

4. Given the data in the table

z |y
20| 4.0
-1.0 | 2.0
0.0 | 1.0
05 | 1.5
1.0 | 25
2.0 | 3.0




7-12

Find a parabola y = axz? 4 bx + c that best fits the data

Find a parametric parabola that best fits the data using the equal spaced param-
eter values with increment At = 0.1.

Find a parametric parabola using chord length parameter values
Find a parametric parabola using centripetal spaced parameter values.

Plot each of parabolas generated above, which is provides the best fit to the data
in your opinion. Why?



