
MA 323 Geometric Modelling

Course Notes: Day 36

Simple Subdivision Methods

David L. Finn

32 Polyhedral Surfaces and Subdivision Surfaces

In this chapter, we explore a different type of surface creation method. We start the chapter
with a simple method based on a Hermite type interpolation for a triangular patch. This
method is a extension of the methods in the previous chapters to a introduce a new structure
for creating surfaces. In this structure, we start with a polyhedral surface, a collection of
planar faces. We then define a new polyhedral surface from the old polyhedral surface, that
is a subdivision algorithm.

More generally, in this chapter, we define a discrete approximation to a surface as a collection
of points, edges, and faces. This is a direct generalization of a discrete curve as collection
of line segments, that is a polyline or a for a closed curve a polygon. These surfaces are
generalizations of the standard polyhedrons from Solid Euclidean geometry; tetrahedrons,
cubes, hexahedrons, dodecahedrons, et cetera. For our purposes, we consider subdivision
algorithms to produce refinements of a polyhedral surface, so that in the limit a smooth
surface is created. A subdivision surface is a surface that arises by applying a subdivision
algorithm (a recursive algorithm) to a polyhedral surface.

To describe our procedure more precisely, we recall that a polygon is an object in a plane
that consists of a set of vertices (points) and edges where the edges are straight lines that
join to points. More generally, a polygon is a special type of planar graph (from Discrete
and Combinatorial Mathematics). For a polygon, the edges can be described as an ordered
list of the edges, where edges are connected in order, and each pair of edges meets at a
vertex. This implies since the list is closed the first vertex and the last vertex are the same
that the number of vertices is equal to the number of edges in a polygon.

A polyhedral surface is a spatial object that consists of faces (typically a polygon in a plane),
edges (line segments) and vertices. One of the principle goals of this chapter is to examine
the structure of a polyhedral surface. This entails developing new data structures, as we
will not be creating parametric surfaces. These data structures are especially nice, when
one uses an object oriented programming language to describe the surfaces.

A second goal for this chapter is to introduce the notion of a subdivision surface. Recall, we
talked about subdivision curves a little bit, when using de Casteljau’s algorithm to create
a Bezier curve. A subdivision surface is an extension of these methods. The advantage
of subdivision surfaces over patches is that they are easy to implement on computers, as
they are iterative to create a refinement of an object. Subdivision surfaces also are nice
because you can define the object topologically, that is up to the number of holes in the

31-2

surface. The subdivision algorithms preserve topological structure, which is nice. To create
a topological surface with patches, requires significant work in order to glue the patches
together in a nice manner. Subdivision surfaces remove that annoyance. Basically, one only
has to create a nice “framework” for the surface. The disadvantage is that it is hard to
shape the surface, and that designing with subdivision surfaces is time consuming if you
have to specify the information directly. However, subdivision surfaces are efficient given
that the initial framework can be sampled directly from the object that is to be modelled
then subdivision surfaces are easy to work with. There are no equations to solve to arrange
the data, and we can work directly from the data provided.

33 A Hermite-Type Interpolation for Triangular Patches

Consider the following problem:

Find a smooth surface S that passes through a given collection of points {pi}
in space and having prescribed normal vectors {ni} at the given points.

There exist powerful methods for arranging a given collection of points into triangles, so
that it suffices to consider the problem for three points and three normal vectors.

We therefore consider three points with corresponding normal vectors (pa, na), (pb, nb), and
(pc, nc). Rather than producing an expression for every point on the surface, we define a
new collection of triangles with points and corresponding normal vectors. The method we
describe with produces four triangles from the one triangle. We do this by defining a point
and normal vector on each edge curve and then forming new triangles as per the diagram
below.

We define the point on the edge curve pij and the normal vector nij as follows:

• For i 6= j, define vj
i = pj − pi and then the tangent vector for the edge curve tji at pi

as the orthogonal complement of the vector vj
i to the normal vector ni, that is

tji = vj
i −

vj
i · ni

ni · ni
ni.

• For i 6= j, define pj
i = pi + 1

3 tji .

31-3

• Define pij = 1
2 pj

i + 1
2 pi

j .

• Define nij = 1
2 ni + 1

2 nj .

Notice that in this definition pij = pji and nij = nji, but pj
i 6= pi

j since vj
i = −vi

j and ni is
not necessarily equal to nj , see diagram below. Furthermore, notice the points pj

i and pi
j

are basically the Bezier control points for the Hermite curve through pi and pj with tangent
vectors vj

i and −vi
j .

With these new edge points pab, pbc and pca, we define the four new triangles by {pa, pab, pac},
{pb, pba, pbc}, {pc, pca, pcb} and {pab, pbc, pca}. This process is a subdivision algorithm, as for
each triangle we produce four new triangles and we refine the approximation of the surface.
Each of the original three points that was on the surface remains on the surface. After
the first iteration, we have six points on the surface. After the second iteration, we have
eighteen points on the surface. The six from the first iteration, plus 3 more for each triangle.
Therefore, the number of points on the surface after n iterations is pn = 34n−1 + pn−1 as
there are 4n−1 triangles in the n− 1st iteration.

The table below shows the number of points and the number of faces in the approximation
to the surface. From the data in this table, one easily sees that the number of points on the
surface after n iterations equals 4n + 2.

n number of points number of faces
0 3 1
1 6 4
2 18 16
3 66 64
4 258 256
5 1026 1024

33.1 Exercises

1. Given a set of four points and four normal vectors as described in the diagram below.
How can you apply the subdivision procedure in this section to obtain a surface that

31-4

passes through the given points and has the given normal vectors? Is there only one
such surface?

2. Apply your solution to the previous problem to the data

pa = [0, 0, 0], na = [0, 0, 1]
pb = [1, 2, 1], nb = [1/2, 1/2, 2/3]
pc = [1, 3, 0], nc = [−1/4, 2/3, 2/3]
pd = [−1, 2,−1], nd = [1/3,−1/3, 9/10]

3. Construct a subdivision algorithm, given a set of four points and four normal vectors
given that the four points all lie on the same plane that is the natural generalization
of the subdivision algorithm in this section.

34 Some Simple Subdivision Surfaces

Polyhedral surfaces are nice but in general polyhedral surfaces are analogous to polylines
for curves. They will not look smooth unless one uses a huge amount of data. Specifying
the amount of data needed to obtain smoothness is not efficient. Therefore, it is convenient
to specify a small amount of data to construct a rough approximate polyhedral surface and
then apply a smoothing operation to obtain a nice surface that is close in some sense to the
original polyhedral surface.

A simple method for defining a smoother operation is a subdivision algorithm. We discussed
a subdivision algorithm for curves in Chapter 4, as an application of de Casteljau’s algorithm
for Bezier curves. In Chapter 4, our subdivision algorithm produced a new polyline that is a
refinement of a polyline. A Bezier curve is the limiting curve that is produced by repeatedly
applying the algorithm. There are other subdivision algorithm for curves other than the
one derived from de Casteljau’s algorithm that was presented in Chapter 4. For surfaces,
subdivision algorithms are more complicated. For instance, the de Casteljau’s algorithm for
patches that we discussed in the previous two chapters do not easily generate subdivision
type algorithms which will produce Bezier patches. This is mainly because the data structure
for Bezier patches is not clearly a polyhedral surface and de Casteljau’s algorithm is not
defined in terms of the polyhedral structure of the control points.

In this section, we introduce some simple subdivision algorithms and the corresponding
subdivision surfaces. The algorithms that we introduce in this section are basically corner
cutting algorithms. Every vertex is replaced by a face. The difference is how new vertices
and edges are defined.

34.1 General Facts about Subdivision Algorithms

Subdivision algorithms need to accomplish a few things in general. First, a subdivision
algorithm must be applied to a polyhedral surface (a set of vertices, edges, and faces).
Second, it must return a polyhedral surface. This means given a polyhedral surface, a
subdivision algorithm must create a new set of points, a new set of edges and a new set
of faces. In principal, the faces should be planar but they do not have to be. Normally,
we want planar faces. To accomplish this requires that the algorithm produce planar faces,
which is the hard part of a subdivision algorithm unless you restrict the type of polyhedral

31-5

surface that the algorithm can be applied. If you remove the restriction of planar faces,
then one needs to use an interpolation algorithm to create a surface for each face.

To remove the restriction of planar faces, one standard technique is to apply the algorithm
of triangulated surfaces, where all the faces are triangles. The advantage of triangulated
surfaces is that three points (non collinear) always define a planar face. This means all
the algorithm has to do is generate triangulated surfaces from triangulated surfaces. An
advantage of triangulated surfaces is that they are easy to store in computers, and they
have been used in computer graphics and CAD/CAM systems for quite a while. So, there
are many algorithms for creating triangulated surfaces and for storing them and rendering
them. Another advantage is that there are methods for creating patches on triangular faces.

34.2 The Midpoint Algorithm

A simple subdivision algorithm is given by defining a new point set by taking the midpoint
of each edge in the surface, eij = 1

2pi + 1
2pj if there is an edge between points pi and pj . We

define new edges by connecting new edge points eij and ekl if the edges pipj and pkpl share
a face and a vertex, (see diagram below). The new faces are given as follows. Each old face
generates a new face by the edge points eij that lie on the edges of the face, and each old
point pi generates a new face based on all edges points eij which are generated by edges for
which pi is a vertex of the edge (see diagram below).

The algorithm for this subdivision surface is attached in Maple code. Below, the algorithm
is described in pseudocode. Let pi be the vertices in the surface, aij be the adjacency matrix
for the surface, fij be the face adjacency matrix, m be the number of faces. Let qk, bkl, gkl

and n be the vertices, adjacency matrix, face adjacency matrix, and number of faces for the
new subdivision surface.

• Define the new points. If aij = 1 define qk = 1
2pi + 1

2pj , and set preck = {m+ i, m+j}
the predecessor points of qk also set facek = fij the faces qk is adjacent to. We store
preck as m + i as renumbering of the point indices.

• Define the new edges. Set bkl = 1 if preck ∩ precl 6= {} and facek ∩ facel 6= {}. That
is if the points share a predecessor point and a face.

31-6

• Define the new faces. If bkl = 1 set gkl = (preck ∩ precl)∪ (facek ∩ facel). The edge kl
is adjacent to the point preck ∩ precl and the edge kl is adjacent to facek ∩ facel

This type of algorithm involves cutting the corners of the polyhedral surface. In the limit
each original face will generate generically one point on the surface.

This midpoint algorithm can easily be generalized by considering a trisection algorithm by
having each edge generate two points. Define new points e1

ij = 2
3pi+ 1

3pj and e2
ij = 1

3pi+ 2
3pj .

New edges are defined in the same ways as in the manner as in the midpoint algorithm.
With the addition of an edge between e1

ij and e2
ij . New faces are generated in the same

manner as in the midpoint algorithm.

34.3 The Centroid Algorithm

In this algorithm, we define a different corner cutting algorithm based on using the centroid
of each face. The centroid of a face is the point given by the affine combination

fF =
1
n

∑

vi∈F

vi

where v1, v2, · · · , vn are the vertices of the face F . In this algorithm, we define new points
by contracting each face, that is defining the new vertex set by

v1
F,v =

1
2

fF +
1
2

p

if v ∈ F . New faces are generated by each old face (containing the new vertex that are
generated by that face), each old vertex (containing the new vertices that are generated by
that face), and each old edge (containing the vertices that are generated by the endpoints
of the edge). The new edges are generated by the old edges. Two vertices have an edge
between them if they are on the same face and there was an edge between the vertices that
generated them or if they were generated by the same vertex and the faces that generated
them were adjacent, see diagram below.

The algorithm is given in the attached Maple code, and a pseudocode version is given below.
Let pi be the vertices of the original surface, aij be the adjacency matrix of the original

31-7

surface, fij the face adjacency matrix, Fi be the faces of the original surface, and m the
number of faces in the original surface. Let qk, bkl, gkl, Gk, and n be the vertices, adjacency
matrix, face adjacency matrix, and number of faces for the new subdivision surface.

• Define the new points: Define the centroid of each face, fk = 1
|Fk|

∑
pij where |Fk|

is the number of vertices in face Fk and pij are the vertices in Fk. Then define
qk,ij

= 1
2fk + 1

2pij
.

• Define the new faces:

– face faces: For each face, Fk define a new face consisting of the points qk,ij

generated by the face Fk.

– point faces: For each point pi define a new face consisting of all the points qk,i

generated by the point pi.

– edge faces: For each edge eij between vertices pi and pj generate a new face
consisting of the four vertices qk,i, qk,j , ql,i, and ql,j where eij is adjacent to the
faces Fk and Fl.

• Define the new edges:

– edge edges: There is an edge between points qk,i and qk,j if there was an edge
between the points pi and pj which both belong to the face Fk.

– face edges: There is an edge between points qki and qli if there is an edge eij in
the original polyhedral surface with the faces Fk and Fl generating qki and qli

respectively.

31-8

34.4 EXERCISES

1. Apply both the midpoint algorithm and the centroid algorithm once to the figure
below. Sketch the surface, by hand. Do not implement the code in this problem.

2. Apply the algorithms provided (the Maple code) to the figure below. Hint: The data
structures are the same as in the exercise in the previous section.

