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Abstract

A one-dimensional monotone interpolation method based on interface reconstruction
with partial volumes in the slope-space utilizing the Hermite cubic-spline, is proposed.
The new method is only quartic, however is €2 and unconditionally monotone. A set
of control points in addition to the data points is employed to constrain the curvature of
the interpolation function and to eliminate possible nonphysical oscillations in the slope
space. An extension of this method in two-dimensions is also discussed.
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1. Introduction

Existing monotone cubic interpolation methods [1] [2] [3] [4] are successful in solving
many practical problems. However, they are C* and not fit for certain applications that
require a higher degree of smoothness. Fora C? continuous monotone interpolation, a
quintic polynomial is required [5] [6] [7], or some subdivision of intervals needs to be
performed [8] [9] [10]. An issue with these methods is that the derivative of the interpola-
tion curve can have global oscillations and this limits their usage. There are methods exist-
ing for either monotone [11] [12] or with nonoscillation derivatives [13] [14]. In general, a
monotone polynomial spline method requires certain constraints on their slope estimate to
be satisfied.
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Figure 1. A monotone interpolation of a strictly increasing data set {x;, s;}.

In this article, we propose an unconditionally monotone interpolation method that is only
quartic, with the C? continuity over the entire domain. The new method has no nonphys-
ical oscillation with its derivative and is 37 order accurate in space.
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Figure 2. Oscillation in the slope-space of a monotone interpolation. Although the slope of
the spline function (red curve) is positive and matches the given areas in each interval de-
fined by the black polylines, thus, exactly passes each data point. Such a monotone interpo-
lation is unfit in certain applications like rebinning a data set of radiation energy counts.
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2. The Solution Procedure

2.1. Description of the problem

A set of points {x;,s;} are specified for i =0,1,2,...N with {x;} ordered increasingly
aswell as {s;}, i.e. x; < x;.; and s; < s;4, hold for each integer i in range, as shown
in figure (1). Here N is the number of intervals defined by the (N + 1) given points.

The problem is to construct an explicit polynomial curve g(x) that passes all the given
data points, i.e., g(x;) =s;, for 0 <i < N, and has a continuous second derivative. In
addition the curve must be strictly increasing (being monotonic g'(x) > 0). Furthermore,
the derivative of the interpolation function, g’(x) should have no unnecessary oscilla-
tions. Figure (2) demonstrates the oscillation in the derivative space of a monotone inter-
polation obtained with a simple Hermite-interpolation method applied to a radioactive par-
ticle energy distribution problem.

2.2. Reduction of the problem

We consider a reduced problem in the slope space of the original problem. Let the slope
function f(x) = g'(x), thenif f(x) satisfy that

f(x) >0, 1)
f;l.iﬂf(f)df =As; = Si41 — S, 2

and f(x) has a continuous first derivative (being C1). Then, we can see that the integral

of f(x)
g() = so + [ f(X)dx €)

not only passes through all the data points, but also has a well-defined second derivative.
Therefore we pursue the solution of the reduced problem by finding certain f(x) that
satisfy the above given constraints.

The domain [x,,xy] is dividedto N intervals with the boundary of interval i defined
by [x;, x;41]- The area As; is bounded by two lines: y = h;,y = 0, and the boundaries
of interval i, here

hi = Asi/Axi (4)

where Ax; = x;,., — x;. A solution of the problem must satisfy equations (1), (2), and (3),
and without unnecessary oscillation.

The above description corresponds to certain statistics problems such as re-binning of a
radioactive particle energy distribution (see figure (3) on the next page), with the x-axis
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being the energy and y-axis being the count of particles in each energy bin. A require-
ment for energy re-binning is that the curve f(x) has to be smooth for differentiation, i.e.
g(x) is C2. Not only that, the solution needs to have no oscillation for a minimal slope
variation. Therefore, as the solution is mapped to a different bin-structure, it still makes
physical sense.

There can be an infinite number of candidates of the solution. To limit the choices we con-
sider a Hermite cubic-spline between an arbitrarily given pair of data points (x;,y,) and
(xg,yg) (here L and R stand for the 'left' and 'right' boundaries of an interval) such that

x(w) = x Hoo(w) + xgHoy (W) + pHyo(w) + prHy (W),
y(W) =y Hyoo(w) + yrHoy (W) + q Hio(W) + qrHy1 (1) (5)

where 0 < u <1 is a non-dimensional parameter. p,, pr are the estimates of (dx/du),
q1,qr are the estimates of (dy/du) on the left and the right ends of a given interval. H;;(u)
are the Hermit cubic spline base functions that

Hoo(w) = 1+ u?Q2u — 3), Hy1(w) = u?(3 — 2uw),
Hyo(u) = u(u - 1)%, Hyy(u) = u?(u—1). (6)

Next, we will show that how f(x) can be constructed with the above Hermite spline to
satisfy equations (1), (2), and (3), by properly choosing a set of control points.
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Figure 3. A good monotone interpolation g(x) should have no nonphysical oscillations
in its slope space (f(x),x) besides matching the given areas under the black polylines
bounded inside each interval exactly. The green curve is such a positive function f(x) that
satisfies the said constraints, obtained with the proposed interpolation method.
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Figure 4. A quadratic fitting in the local coordinate system (§,n) in [x;, x;41]. The two
end slopes and the area under y = h; are exactly matched. The blue dots on the ends are
to be repositioned by finding the intersection between the interval wall x = x; and a Her-
mite spline passing the current yellow control points. The yellow control points in the mid-
dle are to be lifted/lowered later with another round of area-matching.

2.3. Area-matching for selecting control points on interval-walls

The slope of f(x), f'(x) = g"(x) ateach inner data point can be estimated numerically.
For example, using a quadratic interpolation on the three points (x;_; ,s;_1), (x;,5:),
and (x;41,Si4+1), One is able to obtain an estimate of f'(x;), except at the left and right
boundaries. We consider the reduced problem as an interface reconstruction problem for
volume conservation. The approach is to construct the geometry of the interface contained
in interval i and to match the volume (area) As; for each i. The interface piece con-
structed in interval i in general does not match with the pieces constructed in its neighbor
intervals. We will apply a Hermit spline later to eliminate the gaps and ensure a global slope
continuation of f(x).

To start with, we consider a given internal interval [x;, xz]. The average of f(x) in this
interval, h is defined in equation (4), we temporarily drop the subscript without loss of
generality and let the width of the interval be A = xg — x;. We build a local Cartesian co-

ordinate system (&,n) with its origin at (x; + %,h), and let a quadratic curve represent
the interface, such that

n=aé*+b &+c.
For slope match at the leftend ¢ = —% and the rightend ¢ = +§, we have

—aA+b=f, alA+b=fg.
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The area matching means the integral of n over the interval is 0, or

aA3+ A=0
— c A=0.
12

Solving for a,b and c, one arrives at

_fls_fL, _fI$+fL, _A ’ ’
a= 2A ) b_ 2 ) C_24(fL fR)

U]

The constant term ¢ carries the position of the interface at the middle of the interval to the
374 order accuracy (for our fitting here is quadratic).

We will use these mid interval interface positions obtained from the above quadratic fitting
as a set of control points to construct our first approximation of the solution. Each interval
wall x = x; intersects the Hermit spline curve passing the set of the mid-interval control
points and the intersection is taken as a fixed control point. Together, we have (2N + 1)
control points C, (k=0,1,2,...2N —1). The (N + 1) of them with even subscripts are
on the walls of the intervals and are fixed, the rest N of them above the middle points of
intervals are to be shifted vertically by matching volumes again.

2.4. Area-matching for selecting mid interval control points

We are to construct a Hermit spline that passes all the control points. For an exact area
match, we break each original interval into two subintervals about the control point in the
middle of the interval, see figure (5). With the two neighbor mid interval points, there are
three mid interval control points involved in the area-matching. We compute the heights of
the mid interval control points by solving a tri-linear linear system.

In figure (6), the shadowed area A, under a Hermite cubic spline in the interval [x;, xg]
can be calculated with

Ay = [y yx' ) du. (8)

Let the control point immediately leftto x = x;, be LL = (x;;,y..), and the one immedi-
ately rightto x = xz be RR = (xzg, Yrr). Evaluation of the above area integral provides
that

Ay = 0o0YL + O01¥r +%(010(3’R —yu) + 011(Vrr — Y1), ©)
where 000 = X loooo + Xrlo001 + Prloo1o + Prloo11,
001 = X1lo100 + Xrlo101 + Prlo110 + Prl0111,
010 = X1l1000 + Xrl1001 + PrLl1010 + PrI1011/

011 = X h100 + Xgl1101 + Prli110 T PrI1111- (10)
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Figure 5. The yellow dots at the middle of each interval on their quadratic area fitting curves
(green curves) are to be lifted or lowered. The blue control points are the intersection be-
tween the interval walls and a cubic spline (red curve) passing the yellow control points.
The interval [x;, x;,,] is broken to two subintervals for another round of area-matching.

LL

Figure 6. The area under a Hermit spline curve defined in a general interior interval
[xL, xg].- To compute the area bounded for the original interval, two areas from the two
subintervals are to be added together. In another word, each of the intervals[x,,, x,],
[x., xg], and [xg,xgg] in this figure should be considered as a subinterval.
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Our choices of the x-slope terms are

1 1
pL = E(xR - x11), Pr = E(xRR —xp),

and the y-slope terms are

1 1
a. =3 Yr — Y1) qr = E(yRR - ). (11)

They have been explicitly substituted in equation (9) the expression of the physical area.
The o;; terms depend only on the x-coordinates of the boundaries of an interval. The

terms I;;,, are area integrals of the Hermit spline defined as

ljra = Jy Hij ) Hjg(w)du (12)
Each of i,j,k,1 takesthe values 0 or 1. These integrals are evaluated as the following
lyooo = _%: lyo10 = %’ lyoo1 = %' loo11 = —%.
l1000 = _%’ L1010 = 0, Ligor = %: Lip11 = _%;
Io100 = _%’ lo110 = _1_10’ Ip101 = i! ly111 = %,
Li1g0 = %, L1190 = é, Lo = —1—10, Ii111 = 0.

Now let us consider the it" interval, with which 3 control points are involved, see in
figure (7). They are Cy; = (x;,¥:), Caiyr = (xi%, yi%)’ and Cyir1) = (Xi41, Vie1)
with xl.% = %(xl- + Xi41), and y;,q/, to be determined. For area matching we need to
enforce that the sum of the area contribution from the left subinterval and the right subin-
terval to equal an known value that

Aﬁjfr + A:Iight = hiAxl- = Si+1 — Si- (13)

Utilizing equation (9) one arrives at

left left left 1 left left
A;f =O-Of)f yi+ O_Oif yi+%+5(0_1§f (yi+%_yi—§ )+ U1if (yi+1_yi));

right _ right right 1 right right
Ay = Ogp Y4t t+0y Vit t 7\ %10 Yiv1 =y + 011 Visd = Vi) )
2 2 2

Because each of the g;; terms involves only the x-coordinates of the control points, it is

a constant. The sum of areas under each Hermit cubit splines defined on a subinterval is

simply a linear combination of y,_1, y;41/,,and y,_ s. Therefore, we have a tri-diagonal
2 2

linear system involving all intervals to solve in order to match the area exactly in each
interval, with certain boundary conditions provided for the left-most and the right-most
intervals.
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Figure 7. The area under the Hermit spline curves on interval i is the sum of two half-
interval areas define with equation (13). Each area matching involves three mid interval
control points (yellow). The solution of a tri-diagonal linear system determines their heights.

2.5. Boundary conditions

For the interval on the left boundary, we must specify the slope terms p,, q,.. For the inter-
val on the right boundary, we must provide the slope terms pg, gz as well. Currently we
assume two kinds of boundary conditions. The first is a symmetrical boundary condition
with which one sets a ghost control points at the reflection point of the nearest inner control
point. The other one is a counter-symmetric condition by setting a ghost control point out
of the boundary by extending the line-segment defined by the two nearest known control
points involved (see figure (8)). These ghost points provide closure of the solution of the
tri-diagonal linear system mentioned in the last subsection.

counter—symmetric symmetric

boundary condition boundary condition

jo
4 (O
’ 7 S \
$
, ’ (@) O
O,’ ghost point
ghost point

Figure 8. A demonstration of the symmetric (the right side) and the counter-symmetric (the
left side) boundary conditions. A ghost control point (pink) is employed in each case.
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2.6. Positivity in the slope-space

We have obtained f(x) with a Hermite cubic spline on the control points computed in the
last section. This solution may not necessarily be positive when h; is close or equal to zero.
Thus, we need to have a treatment in the possible case this negativity occurs. Fortunately,
we have a nearly trivial treatment that is rather easy to perform, at least for isolated cases.

Considering the worst case that As; = 0, inthe (g(x),x) space this means g(x) must
be a constant. Equivalently, the slope f(x) must be zero everywhere in interval i, other-
wise any variation would create some negative slopes then the monotone condition is vio-
lated. Specifically, the slopes at the two ends must be zero because any positive slope
would cause the right end point to be higher than the left one.

Thus, we choose to enforce the slope terms q;, gz to zeros in the Hermite cubic spline in
case an interval contains a point with a negative f(x). This means the two control points
on interval boundaries are at the same height. Since we also assume a troubled interval is

isolated, we lift the neighbor control points at (xl._%, yl._%) and (x; 43 Y +§) to match the

areas in the two neighbor intervals. Because the area match condition is linear for a single
variable yi_% or ¥;43,, in either neighbor interval so the solution is trivial and does not

affect rest of the intervals.
After the above treatment there will be no occurrence of f(x) < 0 anymore. Therefore,

the monotonicity of g(x) is satisfied unconditionally, see figure (9). Not to mention that
no unnecessary oscillations are introduced with this local treatment.

2000 ¢

1500

1000 F --...___%\
=,
500 F /
I \/
1 1 1 1 ]
S 105 110 115 120 125

Figure 9. With setting the end slopes to zeros (the green curve) and matching the area under
the polylines again, the isolated slope-space negativity in a single interval (the red curve) is
fixed. The locally modified spline still has a continuous derivative crossing the end points
of the interval and does not affect the solution elsewhere.
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3. An Unconditional Monotone C? Spline

3.1. Constructing the proposed method

We have obtained a Hermite cubic spline in previous sections. The spline is non-negative,
differentiable, and the area under it bounded by the walls of intervals and the x-axis exactly
matches a specified area in every interval. Therefore, the integration of f(x) provides a
monotone interpolation of the data set {x;,s;},i =0,1,2,...N with an excellent quality.
We have picked a general parametric form of x = x(u) and y = y(w) inequation (5). In
practice one can simply pick that

X — X

U= fx) =y,

and all the previous discussions would still hold. This means we have an unconditionally
monotone interpolation that is only quartic. It is an integral of the Hermit-cubic splines. Its
order is lower than some of the existing monotone interpolation methods. Although we have
split each interval to two, thus increased the number of control points. Nevertheless, since
our analysis is done in the slope space for a cubic spline, the proposed method is easier to
handle than other monotone interpolation methods. The new monotone interpolation can be
explicitly expressed as the follows

gx) =s; + <xl.+% - xi> fouf(u)du =

s+ (xH% - xi) <inoo(u) + yi+%Go1(u) + q;G1o(w) + qi%Gll(u)), (14)

for the left subinterval of the original interval 'i" with u = (x — x;)/(x,,1 — x;). The
2

quartic functions G;;(u) are integration of the Hermite base functions H;;(u) and

3

Goo(u) =u <1 —u? - %), Gor(w) =u3(1 - %),

u? ud
Gio(u) = E(3u2 —8u+6), G,(w) = E(Bu —4).

Let us define that
1 1
Sit1/2 = g(xi%) =s; + 3 (xi% - xi) YitYia t g(qi + CIH%) .
Then for the right subinterval (x,,1,x;4,), We have
2
u
960 = 5,3+ (311~ x2) | Faddtu =
0

Sit+1/2 T (xi41 — xi+1/2) (yi+1/2600(u) + ¥it1Go1 (W) + ip1/2G10W) + Qi+1G11(u))(15)
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with u = (x — x,,1)/(x;41 — x,,1) thistime. The slope terms are defined as
2 2

qi = %(yi% - yi-%)’ Qiv1/2 = %(Yi+1 —Y) Q1= %(yi% - yi%),
if interval ‘i’ contains no negativeness. In the case of a possible isolated negativeness the
corresponding g terms are taken to zeros. Because the y (thus gq) terms in the above
equations are obtained with area matching, equations (1), (2), and (3) are all satisfied. Be-
cause f(x) is differentiable, g(x) is an unconditionally monotone C? quartic spline.
Besides all the above, the proposed method does not have nonphysical oscillations on its
derivative for we have explicit slope control with a Hermite cubic spline. This is a desirable
feature. It is possible to further refine the solution by minimize the curvature (say) of f(x)
to adjust the level of the control points for minimal variation in slope. However, we are
confident that the proposed solution is of third order accuracy with a quadratic interface
reconstruction. Therefore, the control points are almost right on the ideal solution assuming
which exists. Then, a further refinement is hardly necessary for a practical purpose.

3.2. In two-dimensions

Consider a set of data triplets {xi,yj,si,j} given for i=1,2,...,(I—1),I and j =
1,2,..,(J —1),] with the properties x;1q > X;,¥j41 > Y, ands(i41)j > Sijs Sij+1) >
s;; for an arbitrary pair of integers i,j in the range. Can one construct a spatial
polynomial surface S(x,y) that passes every data point (i.e. S(xi,yj) =s;; forall feasi-
ble integer pair (i,j)), and has positive spatial derivatives

_0S(x,y) _0S(x,y)
f(x:)’) =T> O,Q(X,y) =T> 0

and no oscillation with both f and g?
If the given dataset is also consistent with a sufficient condition for data monotonicity
Vij = Sivrj+1 T Sij = Sijr1 — Sivr,; > 0. (16)

forall valid i and j, then, a method for interface-reconstruction in three-dimensions using
volume conservation may be applied to constructing a two-dimensional monotone spline
that is at least twice differentiable, with no oscillation on the first derivatives of S(x,y).

Without loss of generality, we assume s; ; > 0 and modify a given data set satisfying equa-
tion (16), by adding a layer of phantom data points by simply choosing x, < x;, yo < ¥1,
and assigning s;o = 0,s0; =0 forall 0 <i<1,0<j<J. The monotone feature that
Si+1),j > Sij» Si(j+1) > Sij can be derived from equation (16) using the boundary values.

The interface reconstruction is done in the (8%s/dxdy) space. The “fluid volume’ con-
fined in each rectangular cell x; < x < x;,.1, ¥; <y < yj41, is defined by equation (16),
which is a difference expression for the cross-derivative at the cell center. Because slope
estimates can be computed with certain difference schemes, there are enough data to support
the definition of a local quadratic polynomial (or some other algebraic expression) that
bounds v;; exactly in this cell.
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Figure 10. The top view of an internal cell (solid line) and its neighbors (dashed lines) are
shown above. The blue control points are computed from local interface reconstruction and
are fixed. The yellow control point at the center of each cell is going to be shifted in the
direction perpendicular to the page to match volumes defined by equation (16) by solving a
linear system in order to construct a bicubic spline V(x,y) = (3%S/0xdy).

The geometrical average of the intersections between the straight line x = x;,y = y; and
the reconstructed local interface expressions in the surrounding cells can be used as fixed
control points. The control points above the middle point of each edge of a given cell can
be set similarly (see figure (10)). A bicubic spline polynomial can be defined over all the
control points and an exact volume match for all the cells can be performed to determine
the heights of the control points at the center of cells. Solution of a sparse linear system is
required because a volume integral under such a bicubic spline is a linear combination of
the heights of neighbor control points above cell centers.

Finally, the monotone spline can be obtained with an integral of the bicubic spline V (x,y)
described above

x ry
say) = [ [ vapdid.
X0 “Yo

Because V = (825/0xdy) > 0 holds everywhere by assumption and on the boundaries
x =x, and y =y, the first derivatives of S are nonnegative, as the spatial integrals
of (9%25/0xdy), S/dx >0 and dS/dy > 0 must hold everywhere inside the computa-
tional domain. Thus the spline is monotone. Because explicit slope control is provided for
V(x,y) with setting the control points by volume conservation, there is no oscillation on
the derivatives of S(x,y) for (8%S/0xdy) has no oscillation. In addition, the spatial
slopes is continuous for a bicubic polynomial V(x,y) = (0%25/8x0y), S(x,y) is then at
least twice differentiable.
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Figure 11. The statistical counts of certain radio-active events are binned. The x-axis is
energy density and the y-axis stands for the average event count per energy unit. This plot
has the same interpretation as shown in figure (2).

4. An Application: Arbitrary Rebinning of Statistical Data

A set of statistical data pair {x;,s;},(i=0,1,2,..,N —1,N) is given (which can be con-
sidered as density of radioactive particle counts vs. energy, as shown in figure (11). It is
desired to bin the data in such a way that the number of counts is even in each bin. We are
going to demonstrate how solve this problem with constructing the proposed monotone in-
terpolation.

4.1. Slope estimate

At each internal knot x;, we find its neighbor knots x;_, and x;,,; and fit a quadratic
polynomial

SC) = ai(x —x)* + Bi(x —x) +v;
that passes the three data points and the solution is explicit that
hi —hi—,

ay=—"""}, Bi = (hy * Ax;_q + hi_q * Ax;), Yi = Si-
Xit1 — Xj—1

For an estimate of slopes we can differentiate S(x) and take

fO) =S (x) =B, f'(x) =S"(x) = 2a;.
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4.2. A quadratic area-matching to locate control points above knots

For each interval [x;, x;4,], we fit a quadratic polynomial
2
F(x) = a(x—xl.%) +b<x—xi+%>+ (c—hy)
with F'(x;) = 2a;, F'(x;41) = 2,4, the slope estimates described above. One finds that

(Ax;)?
a-—

a=($"(xip1) = S"())/(20x),  b=("(x)+ $"(xir1))/2,  c=a—

The value of ¢ = F(x,,1) is the estimate of the height of the mid interval control
2

point C,;,,. The quadratic area fitting function F(x) described above has the 37¢ order
spatial accuracy and provides the initial heights of the mid interval control points.

4.3. Apply a Hermit spline to determine control points above knots

A Hermit cubic spline passing the set of mid interval area matching points obtained above
intersects the line x = x; and the intersection is taken as the position of control point C,;.
In the unlikely case that this control point is below the x-axis, for positivity, we would lift
itto (x; 0) thus move this control-point closer to the true solution which is by definition
above the x-axis. These control points are not to be moved.

4.4. Adjust mid-interval control points with a Hermit spline area-match

At this step, each interval is broken to two subintervals. Each interval [x;, x;,;] corre-

sponds to a mid-interval control point Cy;41 = (x,,1 ¥,,1). ¥,,1 is computed by solving
2’ 2 2

a tri-diagonal linear system defined by the area-matching equation (13) for all i’s.
4.5. Constructing the proposed monotone spline

All the control points are now determined. They define a unique Hermit spline curve f(x)
that passes all the control points, has a continuous derivative crossing the bin-walls, and
matches the counts in each bin. We are able to integrate f(x) to construct the monotone
interpolation function g(x) as described with equation (14), equation (15).

4.6. Solving for evenly dividing counts in each new bins

Because g(x) is monotone, one is able to evenly divide the vertical axis in the (g(x), x)
space between (g(x,),g(xy)) to M intervals. Let the new accumulated bin counts be

j(sy — S
S; =so+](NTO),(j=0,1,2,...M).

Then one solves for each j that g(xj) = §; for the new bin-system. Because the deriva-
tive g'(x) = f(x) isavailable at any x in the domain, a Newton-Raphson method

X4 = xf = g () /F ()

will generate the solution quickly. The first guess can be picked with a search to find the
i*" bin that contains the solution, i.e. s; <S; < sy then, simply takento x{ = x,, 1.
2
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Figure 12. The statistical counts in figure (11) are rebinned with the proposed monotone
C?non-oscillation quartic interpolation. The black curve is the slope function f(x). The red
bin structure is the original and the green bin structure is for even bin counts in each bin.

A solution in the case of N =28 and M = 40 is shown in figure (12). One should easily
understand the feature of no oscillation with f(x) is necessary for a sensible solution of
rebinning the statistical data.

5. Conclusion

A one dimensional monotone CZ?quartic interpolation method is proposed. The problem is
reduced to an area matching problem in the slope space to locate a set of control points on
the solution curve. A quadratic fitting is employed to first approximately locate control
points with area matching. Then the solution of a tri-diagonal linear system is used to relo-
cate the control points in the middle of each interval to exactly matching the areas under a
Hermit-cubic spline curve while fixing the control points above the knots. The integration
of the solution in the slope-space provides the desired unconditional monotone C? inter-
polation. The proposed method has the feature of being of lower order (quartic) and with
no undesired oscillation in the slope space. An application to the practical problem of re-
binning a set of nonnegative statistical data shows the proposed method is effective in one-
dimension. It may be extended to two-dimensions in a similar fashion for data sets that
satisfy an extra constraint.
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