MA 323 Geometric Modelling
Course Notes: Day 36
Subdivision Surfaces

David L. Finn

Today, we continue our discussion of subdivision surfaces, by first looking in more detail at
the midpoint method and the centroid method introduced in the last class. Specifically, we
want to consider the size of the surface generated and the convergence of the methods. We
also want to consider the smoothness of the surface generated. As of this point, we have
only considered the base methods not any properties of the methods.

After considering the simply methods in some more detail, we introduce the Catmull-Clark
method. This method is a generalization of bicubic B-Spline patches to a subdivision
method. This method and the method we will introduce tomorrow, the Doo-Sabin Method,
were introduced in 1978 in the Journal Computer-Aided Design. Both of these methods
are generalizations of patch methods to arbitrary topology. Doo-Sabin surfaces are gener-
alizations of biquadratic B-spline surfaces and Catmull-Clark surfaces are generalizations
of bicubic B-spline surfaces. These methods are favored by some in the computer graphics
industry. In particular, Pixar has used these types of surfaces to generate characters in their
movies. Subdivision surfaces have the added benefit in computer graphics that it is easy to
control the complexity of the object based on the size of the object in the picture. Fewer
iterations are needed to render the object when it is distant. This also accounts for focus
of objects that are not central to the scene.

35.1 General Setup

Let us start by setting some notation for the subdivision scheme in general. Let P represent
the original polyhedron and P? represent the polyhedron obtained after the ith iteration of
the subdivision method. Our first goal for today is to look at the size of the polyhedron P?
in terms of the original polyhedron P and the iteration number i. Our second goal is to show
or rather outline that there is a surface S that is the limiting surface of the polyhedrons P?,
that is
S= lim P
1——+o0

The actual proof of the convergence requires substantial use of analysis as we need to prove
the convergence of the limit. Finally, we want to look at whether the limiting surface is
smooth in any sense of the word.

35.2 Midpoint Method

We first consider the size the polyhedra given by the midpoint method. Given that the
original polyhedron P has size (F, F, V) meaning that the number of faces is F', the number
of edges is E and the number of vertices is V. Letting the size of the ith iteration of P
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be given by (F;, E;,V;), we find that after applying the midpoint method, that V;4; = F;
Fi+1 :F1+V1, and Ei+1 :Fi+1+%+1 7§:F1+VZ+E17€:2E1 asngl—EquVz
or B; = F; +V; — &, where £ is Euler characteristic of the surface £ = 2 — 2g where g is the
genus of the surface or the number of holes in the surface. This gives

Fiy1=F+V+0@27'-1)E
Ei1=2"E
Vip1 =2"'E

These relations may be seen easily by observing that the number of vertices of P+ is equal
to the number of edges in P?, and the number of faces in P**? is equal to the number of faces
plus the number of vertices in P?. The number of edges in P! is fixed by the topology of
the surface, that is the Euler characteristic and Euler’s formula for polyhedra.

To see that the midpoint method converges, we first note that the midpoint method satisfies
the convex hull property. Meaning that the polyhedron P**! lies within the convex hull
of the polyhedron P?. This means that that all the iterates P lie within the convex hull
of P so that given that the original polyhedron is bounded (lies inside a sphere of large
radius) all the iterates are also bounded. This means that the limiting process is confined
to a given “compact set” and the iterates can not run off towards infinity. Formally this
means that choosing a sequence of points p; € V; where Vj is the vertex set for P? that the
sequence of points has a convergent subsequence without using any facts about the choice
of points itself and any facts about the method other than the convex hull property. To get
the sequence to converge, we need to choose the sequence in a more specific manner. In
particular, we choose p; so that after iterate k they are generated from the same face from
the polyhedron P*, meaning that py is incident to the face f’ of P* and pj1 is incident to
the face generated from f’ (the face face in the midpoint midpoint), afterwards we continue
to define p; inductively in this manner. We claim that such a sequence converges. To see
this, we need to show that the face generated by f’ is smaller than the face f’. The look
at a angle on the face (meaning three points that form two edges with a common vertex).
The edge generated by this angle is half the distance between the nonincident vertices of
the angle. This implies that the “diameter” of a face defined by as the maximum distance
between two vertices incident to the face, satisfies the following property the diameter of
the face generated by f’ is strictly less than the diameter of the face f’. More importantly
the length of the edges is less than 1/2 the diameter of the face Therefore, the sequence
constructed converges to a point on the surface S. This shows basically that faces converge
to points on the limiting surface. Since this means every sequence of sequence of iteratively
defined faces converges, we can by continuity of each polyhedron conclude that the limiting
surface exists.

Next we want to look at the smoothness of the surface. Let’s suppose that the original
polyhedron has planar faces. The iteration shows that the face faces are still then planar,
and the limiting surface if smooth should have the the original plane as the tangent plane
at the limiting point (the limit of the centroids of the iteratively defined face faces). To
show that it is smooth, we need to show that the area of the faces do not decrease too fast.
We note that the argument in the above paragraph shows that at best the area of the face
decreases to 1/4 the size of the original face and that is if the face was triangle. When
the face has move than three sides, it decreases slower. This rate of convergence is slower
enough to guarantee that the limiting point for the centroid is smooth. Showing nonplanar
face face iterations converge to smooth points requires more work in particular one must
show that the face face iterates get closer to planar.
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35.3 Centroid Method

For the Centroid Method, we first note that the number of new faces is equal to the number
of old faces plus the number of old edges plus the number of old vertices, the number of new
edges is four times the number of old edges, and the number of new vertices is determined
by the topology so that the Euler characteristic remains invariant. The number of faces
is directly given by the method as it defines faces faces, edge faces, and vertex faces. The
number of edges is also given directly from the method as each edge will generate two edge
edges and two face edges for a total of four edges determined by each edge. In particular,
each edge face is four sided and all edges are determined from this face. Therefore, we have

Fin=F+E+V;

Eiy1 =4E;

Viei=&+ Eip1 — Fi
=F,—-E;+V,+4E, - F; — E; - V; = 2E;

This gives )
Fimi=F+V+ (34 -1)E
Eip1=4'E
Vig1 = 34°E

Again we note that the Fuler characteristic is important in determining the size of the
iterates. It is important that the method preserves the Euler characteristic of the polyhedra.
In particular that that method does not generate holes in the polyhedra.

The argument for the convergence of the limiting surface is very similar to the one for the
midpoint method. Again the algorithm satisfies the convex hull property, so that the iter-
ation can not run off towards infinity. Also the edge edges are guaranteed by construction
to be less than the length of the original edges. The face edges are less than the distance
between the centroids of neighboring faces. More importantly by the construction it is pos-
sible to estimate the rate of contraction of the distances to guarantee that the sequences
of points generated on iterative face faces converge. More importantly all vertices by poly-
hedra structure belong to some face and thus every point on the limiting surface can be
approximated by such a sequence.

The smoothness of the centroid method works in a similar manner to the midpoint method,
with again the restriction to planar faces. The nonplanar faces also require the same subtlety
in determine the convergence to a smooth point.

35.4 The Catmull-Clark Subdivision Method

In the Catmull-Clark method, rather than describing the generation globally, we construct
the new polyhedron locally by describing what happens near each vertex v. In the procedure,
we form new points (face points) fj' corresponding to each face that v is adjacent to. We
also form new points (edge points) eg corresponding to each edge for which v is an endpoint.
Lastly, we form a new point vertex point v’.

e Each new face point fj’- is computed by finding the centroid of the face f;.

e Each new edge point e;- is the average of the endpoints of the edge and the face points

/' that the edge is adjacent to.



35-4

e The new vertex point v’ is computed as follows,

;1 1 n / 1 n /
v —§U+ﬁZj:1ej+ﬁZj:1fj7

where n is the number of edges (and faces) that surround the vertex point v. We are
averaging the average of all faces adjacent to v, the average of all edges adjacent to v,
and the vertex v.

We form new faces by considering loops (sequences of vertices) starting at the new vertex
point v" to an edge point €] to a face point f’ to another edge point e} back to the vertex
point v’. The edge points €/, e, must arise from edges e; and ey that share endpoint v.
The face point f’ should be the centroid of a face that shares the edges e; and e,. Notice,
that this algorithm produces faces that are four sided. Consider the diagram below, as an
illustration.

Let’s consider the growth in size of the polyhedron under this procedure, letting F' be the
number of original faces, E be the number of original edges, and V' be the number of original
vertices. Further, let the size of the ith iterate be (F;, E;,V;). The algorithm implies that
Viv1 = F; + E; + V; since each face, edge and vertex generates a new vertex. In addition,
the face that each face is four sided implied that the number of edges is twice the number
of current faces, i.e. E;11 = 2F; 1, since each edge belongs to two faces. The number of
current faces is then given by the Euler characteristic Fi41 — Eip1+Vie1 == F,— E;+V;
or —F, 1+ F,+E;+V, =F,— E; +V,; which gives F;;; = 2F;. This described in summary
below

Fip1=2EF; =2F; 1 = 4F;
Vili=F,+ E; +V;
or
Fiyn=34'E
Ei1=4'FE

Vim=F+V+ (G4 -1)E

which is very similar to the centroid method replacing the number of vertices with the
number of faces.
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Showing that the algorithm converges is a little more delicate. First, we note that like the
midpoint method and the centroid method, the Catmull-Clark method satisfies the convex
hull property, as each new vertex is arrived at via a convex combination of original vertices.
This means that the limiting surface can not run off towards infinity. It takes a more work
to show that the lengths of edges decrease, but once that is done then the convergence to a
limiting surface proceeds as before.



