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FITTING NOISY DATA USING CROSS-VALIDATED

CUBIC SMOOTHING SPLINES
S.B. Pope R. Gadh
Sibley School of Mechanical Mechanical Engineering Department
& Aerospace Engineering Carnegie Mellon University
Cornell University Pittsburgh, PA 15213
Ithaca, NY 14853
ABSTRACT

An algorithm is described for approximating an unknown function f(x),
given many function values containing random noise. The approximation
constructed is a cubic spline g(x) with sufficient basis functions to represent f(x)
accurately. The basis-function coefficients are determined by minimizing a
combination of the infidelity E (the mean-square error between g(x) and the data),
and the roughness T (which is a measure of the tortuosity of g(x)). The quantity
minimized is E+pT, where p is a smoothing parameter. A suitable value of p is
determined by cross validation.

Results of numerical tests are reported which show that this algorithm is
superior to least-squares cubic splines: in general the statistical errors are

substantially less, and they are insensitive to the number of basis functions used.

INTRODUCTION

We address the familiar problem of approximating an unknown function
f(x) in an interval [O,L] given samples of the function values containing random
noise. The N sample values fj are at the locations x; (i = 1,2,...., N), and can be
written

349
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fi = £x) + M W

Here n; are the (unknown) random errors that are assumed to be independent and to

have mean zero

<ni>=0. 2
The variances

<> = 02—(7(1) . 3)

may or may not be known.

The general problem described can take on different appearances depending
on the number of samples N, the nature of the function f, and the magnitude of the
random error 6. Here we are mainly concerned with a simple smooth function f,
and with dense data. By this we mean that the number of samples N is very large
(10,000 say), and that the number density of sample points is nowhere small. But
at the same time the error associated with each sample is large, perhaps of the same
magnitude as f itself. Problems of this type arise in Monte Carlo methods for
simulating turbulent flows (Nguyen & Pope 1984, Pope 1985, Haworth & Pope
1987a,b, Haworth 1987, Anand, Pope & Mongia 1988).

In the simplest case x the single spatial variable, and fj = F(x;) are samples
of a property (e.g. velocity, temperature, composition) of a fluid particle located at
xj. (F(x)is a random function.) The Monte Carlo method provides N sample pairs
(x;,fp) from which the expectation f(x) = <F(x)> is to be deduced.

The present work, and much previous work on this problem, is based on
cubic splines (see de Boor 1978, Lancaster & Salkauskas 1986). We approximate
f(x) by a cubic spline g(x):

M

g(X)E; akbk(x) , 4
=1

where by(x) are fixed cubic spline basis functions, and ak are coefficients to be
determined from the data. If the number of basis functions M is chosen to equal the
number of samples N, then a spline g(x) can be formed that passes through all the
data points. But since the data contain random errors, this is not a good
approximation to £(x).
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Since the function f(x) is, by assumption, simple and smooth, it can be
“accurately” represented by far fewer basis functions. Although it is imprecisely
defined, it is useful to denote by M; the minimum number of basis functions needed
to represent f(x) accurately. In most cases — and certainly for dense data — M, is
much less than N. Rather than choosing M = N, we could choose M =~ M; and
determine the coefficients by least squares. That is, we choose the coefficients ay to
minimize the infidelity (or mean square error)

N
E= 21: [fi - g(x)12wi, 5)
i=

where wj are numerical weights ascribed to each sample. Although simple and
robust, the least-squares method has the disadvantage that the optimum choice of M
is not known a priori. If M is too small, g cannot represent f accurately; if M is too
large, g tends to follow the random errors. Test results to show this are presented
in the third section.

We follow Reinsch (1967) in using smoothing splines (see also, de Boor
1978; and Schoenberg 1964). In this approach, the quantity minimized is a
combination of the mean-square error and the tortuosity — or lack of smoothness.
The roughness (or tortuosity) T of the approximant g is defined by

L

T= [lg"cldx, ©)
0

where primes denote differentiation with respect to x. In Reinsch's algorithm the
number of basis functions M is equal to the number of samples N with the spline
knots being at the data points xj: and for a given value of a (non-negative)
smoothing parameter p, the basis function coefficients ax are chosen to minimize

x=E+pT. )

The choice p = 0 yields the spline that passes through the data (or the least-squares
spline if M is chosen to be less than N). At the opposite extreme, as p tends to
infinity, g(x) tends to the straight line with the minimum least-squares error.
Reinsch suggests a means of selecting a value of p based on the variance 62(x;) of

the error in the data.
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In the present context there are two difficulties with Reinsch's algorithm.
First, the result g(x) is found to be extremely sensitive to the choice of p; and a
simple strategy of specifying p a priori is unsatisfactory. Second, the choice M =N
can lead to a very large (10,000, say) system of linear equations.

The algorithm that we present and demonstrate here overcomes both of
these problems. First a near-optimum value of the smoothing parameter p is
obtained by employing the statistical technique of cross validation. Second, the
number of basis functions is chosen to be much less than N, but larger than M. In
contrast to the least squares method, here the choice of M is not crucial, since
smoothing is effected by minimizing the roughness, not by restricting the number
of degrees of freedom (M) of the approximant g(x).

In the last ten years there has been considerable work on cross-validated
cubic splines. Wahba and Wold (1975) used a "leaving-out-one” cross-validation
techniques to determine the smoothing parameters p for the Reinsch spline; while
Craven and Wahba (1979) did the same using "generalized cross validation"
(GCV). Improved algorithms to determine p using GCV have been developed by
Elden (1984), Hutchinson (1985) and Woltring (1986); while extensive theoretical
results have been obtained by Wahba (1985) and Li (1986). The cross validation
technique used here is somewhat different, being better suited to the case of dense
data. It could be termed the "leaving-out-half" method, as explained in the next
section.

The use of the Reinsch spline — in which the number of basis functions is
equal to the number of data points — is clearly inappropriate to dense data. Using a
convenient set of basis functions — independent of the data — was suggested by
Wahba (1980) and has been used subsequently by Nychka et al. (1984) and by
O'Sullivan & Wahba (1985).

In the next section the algorithm is described. In the third section, for a
simple test problem, the method is comprehensively tested and compared to the
least-squares method. The general performance of the method, variants and
extensions are discussed in the fourth section. Finally the main conclusions are

drawn.

ALGORITHM

To give an overview of the algorithm: the data are first divided into two
independent sets of samples. Given p, a smoothing cubic spline is determined from
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each data set. The cross error Z(p) is defined to be the mean-square error between
each spline and the data set that was not used in its determination. The value of the
smoothing parameter used is p* — the value that minimizes Z(p). The value of p*
is determined iteratively.

The ith of the N samples has value f;, location x; and is ascribed a numerical
weight wi. (This may be unity, or 6(xi)-1 if 62(x) is known.) These N samples are
divided into two independent sets:

9, X9 WO 212, N0 s=12; NOLND N @)
It is important that the two sets be statistically independent; and it is desirable that

the number density of samples along the x-axis be approximately the same. If the
samples are ordered in x, or if their ordering is random, the division can simply be

achieved (for even N) by:
N =N@ =Np2, ©
69 =ty 1ypgs § = L2 NO (10)

The number of basis functions M is selected, and the cubic spline basis
functions bg(x) are determined. (We choose equally spaced knots.) Based on the
two data sets and the value of p, two splines are formed:

M
Pum=2 dPebm; s=12. an

(s)

The basis-function coefficients a,” are determined by minimizing

X(S) = E(S) + pT(S) , (12)

where E(s) and T(s) are defined in an obvious way by analogy to Eqgs. (5) and (6).
By standard techniques (Dahlquist et al. 1974; de Boor 1978), the solution
to the minimization problem can be written in matrix form as

-1
ﬁ(s)(P) = (E(s) +p0) X.(s) s (13)
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where
8y =18V AT (19

and the components of _B_(S), Cand X(s) are

(s)

N
_ )y, /() (s)
B ik E wis bj(xis )bk(xis), (15)
L
Cp = j b, (b (x)dx , (16)
0
and
NG
Y 2 wb (NS 17)

...
[0
—

In Eq. (13), the matrix g(s) + pC is M x M, banded (with bandwidth 7),
symmetric, positive-definite. Hence the equation can be solved very efficiently
using the Cholesky square-root method. Note that &) depends on p, but that E(s)’

CandY, . donot.
= (s)

For a given value of p we obtain two approximants g(l)(x,p) and g(2) (x,p)
to the underlying function f(x). In order to determine a near-optimum value of p we
use cross validation. The cross error is defined by

1) 2
N

wiDED gDy W@V, as)
i=1

MZ

Z(p) =

1

]
—

This is the mean-square error between the sets of data (1 and 2) and the
approximants based on the other data sets (2 and 1). The minimizer p* of Z(p) is
chosen as the smoothing parameter.

The determination of p* is accomplished by an iterative algorithm based on
Newton's method. In order to implement Newton's method we need to determine



Downloaded by [University of Cambridge] at 02:42 01 January 2015

FITTING NOISY DATA 355

the first two derivatives of Z with respect to p; this in turn requires the
determination of the first two derivatives of g(s).

Let g'(s)(p) and a" (s)(p) be the first and second derivative of a (s)(p). From
Eq. (13) we obtain

' -1
Q(S) =- (E(S) + Pg) g.&(s) ’ (19)

and

-2(B

" -1 i)
8"y = 2B, +p0) ' Ca Q0)

==(9)"
To simplify the subsequent equations we replace g(s), g‘(s) and 3"(S) by

Q(S), [od ) and o ) defined by

(1) =22y %) =21y & @b
Now Eq. (18) can be rewritten in matrix form as
2 N o
2 T T
2= (3w 1917 - 208, Y, + ) By} - 22
Differentiating with respect to p we obtain
_1dZ(p
R(p) =502
_% @l B YT o (23)
= 2 (@ By X%y
and differentiating again
2
dR(p) o \T ' T T | pon
= 2 @) By * @0 By Y ¥y @4)

At p = p*, Z(p) is a minimum and R(p) is zero. Starting from an initial
guess p® = 0, Newton's method to solve the equation R(p*) = O results in the
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iteration
(n)
p(n+1) = p(n) . R(p(n))/dein ) 25)

In summary, one Newton iteration consists of the following steps. Given
p(n), Egs. (13), (19) and (20) are solved for g(s), _'(S) and g"(s). (This requires

two Cholesky decompositions and six back substitutions. Note that the coefficients

(n)
By Eand Xy ")

and its derivative are evaluated from Egs. (23) and (24). The next Newton iterate
p("+1) is then obtained from Eq. (25).
Several comments about the iteration are called for. First, since Newton's

do not need to be re-evaluated on each iteration.) Then R(p

method is not globally convergent, it is combined with a bisection method: if the
next Newton iterate p(+1) lies outside the currently known range [Pmin, Pmax] of
p*, then p(®+1) is replaced by (1/2)(Pmin + Pmax)- Initially pmin is zero and pmay is
set to (machine) infinity. As the iteration proceeds pmin and pmax are updated.
Second, it is recognized that the solution of R(p) = 0 guarantees only a local
minimum of Z(p). Tests indicate that usnally Z(p) is a simple convex function and
hence the global minimum is obtained. But in general we accept the first local
minimum obtained by the iteration.

Once the smoothing parameter p* has been obtained, the coefficients a(1)(p*)
and g(z)(p*) are determined. The final result is the spline approximant Eq. (4) with
the coefficients being

a=75lamE") +a0E" . (26)

NUMERICAL TESTS

We present numerical results that determine the performance of the cross-
validated cubic smoothing splines for a simple test problem. The performance of
the new algorithm is compared to that of least-squares cubic splines.

Test Problem
The function f(x) selected for the test is

f(x) =sinx, @7
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in the interval [0,47]. The N samples are divided into two sets of N 2 =N/2

samples each. For the first set, the sample locations xgl)(i = 1,2,..,Nypp) are

randomly distributed uniformly in the interval [0,47]. For convenience, the sample
locations of the second set are chosen to coincide with the first:

x?) = xgl) . (28)

(This choice simplifies the algorithm since then B(1) and B(2) are equal, see Eq.
(15).) The samples fgs) have a uniform Gaussian error of standard derivation o©.

That is
£9 = £x9) + ot (29)

where é(is) are N independent standardized Gaussian random numbers. The

(s)

numerical weights w;™ are set to unity.

Mean-Square Errors

Numerical tests are performed by comparing the spline approximant g(x) to
the known test function f(x). It is found that the error in the approximant is
significantly greater near the boundaries (x=0 and x=4n) than it is in the central
portion of the interval. The reason for this (and a means of reducing these
boundary errors) is discussed in the next section. In order that the numerical tests
are not unduly influenced by the boundaries, we base our measures of error on the
interval [x,3m].

The root-mean-square (rms) error € is defined by

3x

5(2)51— j<[f(x)-g(x)]2> dx , (30)
2n 5

where angled brackets denote expected values. It should be realized that g(x) is a
random function. For one realization (i.e. one set of random numbers égs)) we can
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define the error £p by

3n
~2_1
&=s- nj [£0x)-g(x)]2dx . 3D

Then we have

8(2) = <§(2)> . (32)

In the results reported below, g is estimated by averaging Eg over 100 independent

realizations; the resulting statistical error in € is found to be less than 10%.

In some applications — including that which motivated this study — in
addition to an approximation to f(x), we require approximations to the derivatives
f(x) and f'(x). If g(x) is a good approximation to f(x), it by no means follows that
g'(x) is a good approximation to f'(x). (Consider, for example, g(x) = f(x) + y sin
(x/\vz) for small y.) Hence we also examine €; and &3, the rms errors in g'(x) and
g"(x), defined by

in

2 _ 1 dmf(x) dmg(x)}2 =12

2 =L f<[--—-—dxm SRS ax, m=12. (33)
T

As with g, €1 and € are estimated from 100 independent realizations.

Independent Parameters

The errors €9, £1 and €7 depend on the values of the following parameters:
M, the number of basis functions; o, the standard deviation of each sample; and,
Ni/2, the number of samples in the range [r,371]. In the numerical tests, the values

used were:
M 10, 15, 20, 25, 30, 35, 40, 45, 50, 55.

o 1/256, 1/64, 1/16, 1/4, 1.
Ny 162, 322, 642, 1282, 2562,
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For the case of dense data (N1/2 >> M), we expect, and indeed find, that
the errors €y, depend on 6 and Ny, only through the parameter

Y=0/VNyp . (34)

This important quantity we term the uncertainty in the data, and its inverse 7! is the
certainty.
To illustrate the significance of ¥, we consider the quantity

N1
g
=1

1
2 0, (35)

L
Nip

as an approximation to
1 4n
g=— [ f(x)dx . (36)
47 0

Elementary statistical calculations show that the rms statistical error in this
approximation is y. This result has two significances. First, the error depends on
Nyj2 and G only as they appear in y: doubling Ny, has the same effect as
decreasing G by a factor of V2. Second, since estimating ¥ is easier than estimating
(x), the best that can be expected of the smoothing algorithm is that € is not much
greater than v.

In light of these considerations we define normalized rms errors by
& =emfy, m=012 . (37)

Preliminary tests showed that indeed e:n depend on Ny, and ¢ solely through v.

%*
Hence the objective of the tests is to determine € as functions of M and .

Results

. * . .
Figure 1 shows the normalized error €; as a function of the number of basis

functions M, with the uncertainty y as a parameter. For moderate and large M
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FIG.1: Rmserroring, 8;, against number of basis functions, M, for different

uncertainties: ¥ = 3.1 x 104, 4.4 x 10-4, 6.2 x 104, 8.7 x 10-4,
1.2 x 10°3. (o = 1/64). Cross-validated smoothing splines.

(M=220), the error appears small (8; = 3) and independent of M and y. But for

small M (M=10 and M=15) the error is large and increases with vl

For small M (M=10, say) there are too few basis functions to represent the
function f(x). Consequently, even if there is no random error (i.e. ¢ =7 = 0), there
is a significant deterministic error. Because of this, for small ¥, €0 is independent

of v and hence e:; varies as y1.

As M increases, the deterministic error decreases rapidly. At what stage it
becomes negligible depends on the magnitude of the random error. Figure 1

tha |-

tn

s}
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FIG. 2:  Rms error E; as a function of the uncertainty vy for different numbers of
basis functions. Symbols:(), M =20, @, M = 25; O, M=30m, M

=35;A, M=40;4, M=45,v, M=50; ¥, M =55. Cross-
validated smoothing splines.

suggests that with 20 basis functions the deterministic error is negligible. The
results to follow confirm this conclusion provided yis greater than 10-3,

To study more closely the error ez; in cases where the deterministic error is
small, in Fig. 2 we show e:) against vy for different values of M 2 20. For not too
small values of y (y > 10-3, say), 5; is in the range 2-3 and increases weakly with

the certainty 1. Most importantly, the error depends little on M: thus, the choice
of the number of basis functions is not crucial (provided only that M = M; = 20).
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FIG. 3:  Same as Fig. 2. Least-squares cubic splines.

For very small uncertainties (y < 10-3) there is more variation of E:; with M.

Note that with the smallest number of basis functions (M=20) the error begins to

increase rapidly, indicating that the deterministic error is no longer negligible.
Figure 3 is the same plot as Fig. 2, but for least-squares splines. The

conclusions to be drawn are quite different. The errors e:; are generally larger (in

the range 3-5); they are essentially independent of v, and, most importantly, they
increase with M. For least squares, then, the choice of M is crucial.
Figures 4 and 5 show similar plots for e:, and Figs. 6 and 7 show EZ.
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FIG. 4:  Rms error in first derivative g, 8’;, as a function of the uncertainty y.

Symbols same as Fig. 2. Cross-validated smoothing splines.

Qualitatively the behavior is the same to that of es, although the magnitudes of the

errors can be much larger.
To emphasize one virtue of the new algorithm, Figs. 8 and 9 show e;

against M for cross-validated smoothing splines and for least-squares splines. For
least-squares (Fig. 9) the error increases rapidly with M: with M = 55, the error is
16 times that with M = 20. With cross validation, on the other hand, the error
grows slowly with M: with M = 55 it is less than twice that with M = 20.
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FIG 5:  Same as Fig. 4. Least-squares cubic splines.

It is evident that with least squares it is crucial to use a near-optimum
number of basis functions. In nearly all applications this number is not known a
priori, if at all. Nevertheless, we ask the question: With the optimum number of
basis functions, how do the errors e:n compare for cross validation and least

squares? We define Ep(Y) to be the minimum of 5;(M,Y) over all the values of M

used. Figure 10 shows &, against y. It may be seen that, for y greater than 10-3,

the error using cross validation is consistently and significantly less than the error
using least squares. For very small uncertainties (y<10-3) the two methods yield

the same errors (with the near-optimum number of basis functions).
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FIG. 6:  Rms error in second derivative g", e;, as a function of the uncertainty v.

Symbols as Fig. 2. Cross-validated smoothing splines.

Bias

Above we have used the root mean-square errors €g to characterize the
difference between f(x) and its approximant g(x). We can be more precise and
differentiate between three errors: g(x) can be decomposed as

g2(x) = f(x) + d(x) + B(x) +r(x) . (38)
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FIG.7:  Same as Fig. 6. Least-squares cubic splines.

Here d(x) is the deterministic error, mentioned above, due to the number of basis
functions M being insufficient to represent f(x) accurately. With go(x) denoting the
value of g(x) obtained by least squares without random error (p = ¢ =y = 0), the
deterministic error is

d(x) = go(x) - f(x) . (39)

Note that d(x) depends on M and is, of course, non-random.
The basis B(x) is the systematic error due to the random error in the
samples:
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FIG. 8: Rms error in second derivative g", E;, against number of basis

functions., M, for different uncertainties: 7y and ¢ same as Fig. 1.
Cross-validated smoothing splines.

Bix) = <g(x)> - f(x) - d(x)
= <g(x)> - go(x) . (40)

The remainder, r(x), is the random error which, it follows, has zero mean.

In some applications (e.g. some Monte Carlo methods) a non-zero bias may
be less desirable than a smaller (unbiased) random error. One reason is that
unbiased random errors can be reduced at will by averaging results over many
realizations. But in such a procedure the bias remains unchanged.
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FIG. 9:  Same as Fig. 8. Least-squares cubic splines.

In this respect the least-squares method has an advantage in that it is
unbiased. With some mild assumptions, it follows from Eq. (13) that the spline
coefficients ag of the bias B(x) are given by

ag=-p<B>!C<a>. (41)

Clearly, then, with least squares (p=0) the bias is zero. With cross-validated
smoothing (p>0) the bias is non-zero except in particular circumstances. (For

example, if <a> corresponds to a straight line (i.e. a curve of zero roughness) then
C<a> is zero.)
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FIG. 10: Minimum (over basis functions used) rms errors €, €1, £, as functions

of the uncertainty y. Triangles, £q; circles, & 1; squares, £€9; solid
symbols, cross-validated smoothing splines; open symbols, least-
squares cubic splines.

We define the rms bias error £ by

3n
€ =—21;nj <B(x)2> dx . @2)

As before, ep is estimated by averaging over many realizations. In this case,

however, the estimation and control of the statistical error is less straightforward.
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FIG. 11: Rms bias error ggasa function of the uncertainty y. (M =25).

The method used (see Gadh 1987, for details) results in a statistical error of less

than 8%.
Figure 11 shows €p as a function Yy for M = 25. It may be seen that the data

are well represented by the empirical relation

ep/y="0.75 . 3)

Although all three errors (d, B and r) contribute to the rms error €0, it should
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be noted that bias makes a small contribution. If e:; is 2, say, and Eq. (43) holds,
then the bias makes less than a 10% contribution to 58‘

In summary, unlike the least squares, the cross-validated smoothing
algorithm is biased. However, the bias is quite small (10%) compared to the
random error.

DISCUSSION

The algorithm described has been used extensively in Monte Carlo
calculations (Nguyen and Pope 1984; Pope and Correa 1987; Haworth and Pope
1987a,b, for example). It has proved completely reliable when applied to widely
differing functions f(x), with different types of random error. We now discuss
some observations concerning the algorithm and extensions to it.

Rate of Convergence

The smoothing parameter p* is determined iteratively. It is found that the
convergence of this iteration is not as fast as desirable: typically 15 iterations are
needed. It may be that an analytical investigation into the nature of the function
R(p) (Eq. 23) could guide the development of a more rapidly converging algorithm.

Variants

Two variants of the algorithm were investigated. The first is to define the

"

roughness T (Eq. 6) in terms of the third derivative g"'(in place of g"). The
second variant pertains to the cross validation. The samples are divided in K> 2
independent data sets (rather than just two). A spline is determined from each data
set; and the cross error Z(p) is defined as the sum of the mean square errors
between the spline s (s = 1,2,...,K) and the other data sets t (t = 1,2,...,.K; t # 5).
Numerical tests were performed on both of those variants (with K up to
12). Although the tests were not as comprehensive as those described in the
previous section, the general conclusion is that neither variant has a major effect on

* . T
the magnitude of the statistical errors € . Hence, on grounds of simplicity and

computational efficiency, the basic algorithm is to be preferred.
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Cross-Validation Technique

As mentioned in the Introduction, the "leaving-out-half" cross validation
technique used here differs from the "leaving-out-one” (Wahba & Wold 1975) and
GCV (Craven & Wahba 1979) techniques. It has been conjectured (Wahba 1988)
that for the present case of dense data all three methods give similar values for the
smoothing parameter p: but it is further conjectured (Wahba 1988) that the current

method is inferior for sparse data.

Boundaries

It was mentioned above that the discrepancies between f(x) and the spline
approximant g(x) tend to be greatest at the boundaries x = 0 and x = L. This is
because the first few and last few basis functions lie partly outside the interval
[0,L]. Consequently, they are determined by fewer samples and hence have greater
statistical error.

It may be — as it is in the Monte Carlo applications mentioned — that some
information is known about the function at the boundaries. General linear
boundary conditions are

o] f(0) + w2 f(0) + w3 =0, 44)
and
o4 fL) + o5 F'(L) + =0, (45)

where ®1,...,06 are prescribed constants. The splines g(x) can be constrained to
satisfy these conditions, without affecting the structure of the algorithm. Itis found
that specifying boundary information in this way greatly improves the behavior of
the splines near the boundaries.

Pre-Processing

For the case of dense data (N > 100 M, say) the computational expense can
be decreased by pre-processing the data (f(is), x(is), W(is); i=1N®; s=1,2). First

the interval [0,L] is divided into N 172 bins, generally of equal size. (The number
N1 s typically 4 times the number of basis functions.) The jth bin is centered at X;
and the samples falling in it are averaged to form Tgs) and \7vj(s). Then the spline

algorithm is applied to the data ?J@, 55;5) =Xj, %’v_gs); i=1, Ny s=12
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The principal advantage of this pre-processing is that the computational
work required to form the coefficients B(s) and Y(s) (Egs. 15 and 17) is greatly

reduced. A secondary advantage is that the sample locations ?j(l) and ?j(2) coincide,

Provided the bin width L/Nj/; is small compared to the scale of variation of the
function L/M, a negligible deterministic error is incurred.
A second form of pre-processing is to estimate the variance 62(x) from the

samples, and to prescribe numerical weights wgs) based, in part, on this estimate.

Since this process is common to many algorithms we do not elaborate on it here.

Extension to Several Dimensions

For the case of d dimensions (d > 1), there is an obvious extension of the
algorithm, in which there are M d-dimensional basis functions, and the roughness
is defined in terms of V2g(x). Such an algorithm, though feasible, would be
considerably more expensive than the one-dimensional algorithm. This is because
the number of basis functions required increases exponentially with d (all other
things being equal).

More attractive, when possible, is the tensor-produced method (see de Boor
1978). In this method the d-dimensional spline g(x) is formed by constructing one-
dimensional splines in each of the d-directions in turn. This method has been
implemented in two dimensions (Anand, Pope & Mongia 1988) and in three
dimensions (Haworth 1987). Preliminary tests suggest that good results are
obtained by using the cross-validated smoothing algorithm in the first direction, and
the more economical least-squares method in the remaining directions.

CONCLUSION

We have developed an algorithm to approximate an unknown function f(x)
given function values containing random noise. The approximant g(x) is a cubic
spline with a sufficient number of basis functions to accurately represent f(x). The
basis-function coefficients are determined by minimizing a combination of the
infidelity E (i.e. the mean-square error between g(x) and the data) and the
roughness T of g(x), Eq. (6). The quantity minimized 3, = E + pT depends on a
smoothing parameter p. A "leaving-out-half" cross-validation technique is used to
determine a suitable value of p.
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For a simple sinusoidal test function, the performance of this method has
been determined, and compared to that of least-squares cubic splines. The main
conclusions from these tests are as follows.

i) The choice of the number of basis functions is not crucial, providing

only that there are sufficient to represent the function f(x) accurately.

i) For least-squares splines, on the other hand, the error between f(x) and
g(x) increases rapidly with the number of basis functions, beyond
some optimum number.

iii) Even if the optimum number of basis functions is used, the errors in
the cross-validated smoothing method are substantially less than those
in the least-squares method (except when there is little uncertainty in the
data, in which case the performance of the two methods is similar).

iv) The least-squares method is unbiased, whereas the cross-validated
smoothing method has a small bias. The magnitude of the bias is
typically 10% of the unbiased random error.

The method has been used extensively in Monte Carlo calculations. Its

performance is enhanced by pre-processing the data, and by incorporating any
known boundary information. By using the tensor product representation, the

method has been extended to two and three dimensions.
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