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Abstract: Trajectory reconstruction is the process of inferring the path of a moving object between
successive observations. In this paper, we propose a smoothing spline—which we name the V-spline—
that incorporates position and velocity information and a penalty term that controls acceleration. We
introduce an adaptive V-spline designed to control the impact of irregularly sampled observations
and noisy velocity measurements. A cross-validation scheme for estimating the V-spline parameters
is proposed, and, in simulation studies, the V-spline shows superior performance to existing methods.
Finally, an application of the V-spline to vehicle trajectory reconstruction in two dimensions is given,
in which the penalty term is allowed to further depend on known operational characteristics of
the vehicle.

Keywords: hermite spline basis functions; cross-validation; adaptive penalty; piecewise continuous

1. Introduction

Global Positioning System (GPS) technology has become an essential tool in a wide
range of applications involving moving vehicles, from transport management [1] and
traffic safety studies [2] to modern precision farming [3]. Nevertheless, the accuracy of
GPS tracking seems to be neglected in many applications [4,5]. Even if an accurate GPS
device is utilized, GPS remains subject to various systematic errors due to the number of
satellites in view, uncertainty in satellite orbits, clock and receiver issues, etc. [6,7]. These
measurements are usually irregularly recorded, leading to what is known as irregularly
spaced or intermittent data. Reconstruction or forecasting based on irregularly spaced data
is usually more complicated and less accurate than that based on regularly spaced data [8].

To be fit for purpose, trajectory reconstruction must be accurate and robust. Two
key issues for reconstruction are (i) how to handle observations that are inherently noisy
measurements of the truth, and (ii) how to interpolate appropriately between observations,
also known as path interpolation. In this context, statistical smoothing techniques can be
useful processing tools because they are designed to minimize the impact of random error,
and still typically require less time to detect random errors than visual inspection [9].

It has been shown previously that, if kinematic information such as velocity and
acceleration can be included, interpolation and hence trajectory reconstruction can be
greatly improved. The authors in [10,11] used B-splines to give a closed-form expression
for a trajectory with continuous second derivatives that passes through the position points
smoothly while ignoring outliers. The authors in [12] presented a quintic spline trajectory
reconstruction algorithm connecting a series of reference knots that produces continuous
position, velocity, and acceleration profiles in the context of computer (or computerized)
numerical control (CNC). The authors in [13] gave a piecewise cubic reconstruction found
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by matching the observed position and velocity at the endpoints of each interval; this is
essentially a Hermite spline. The authors in [14] also used Hermite interpolation to fit
position, velocity and acceleration with given kinematic constraints. The authors in [15] im-
plemented spline-based trajectories in order to overcome parametric singularities that occur
in some reconstruction methods. The author in [16] proposed the kinematic interpolation
approach that uses a set of kinematic equations to describe the motion of an object in terms
of polynomial splines. Based on an adaptive cubic spline interpolation, the authors in [17]
proposed an approach that, in the context of the Aircraft Communication Addressing and
Reporting System, improves the smoothness and precision of trajectory reconstruction.

These approaches focus on optimal paths that are typically the shortest in either
distance or time between starting and end points. Additionally, in some approaches, the
moving object is assumed to be a point-like object. In this case, the object can rotate about
itself to orient along the path in the direction of the goal point [15]. This assumption is
unlikely to be appropriate for a real vehicle or vessel, particularly a tractor, which is the
motivating example in our study.

Modern farming relies on the precise application of fertilizers, pesticides and irrigation.
Large commercial farms typically operate a fleet of farm vehicles for these tasks, and it is
of crucial importance for economic, environmental and regulatory reasons that the location
and operational characteristics of these vehicles are recorded systematically and accurately.
In order to do this, it is becoming standard to equip farm vehicles with GPS units to record
the location of the vehicle on the farm. It is the goal of this study to develop an appropriate
tool to reconstruct vehicle trajectories from such data, particularly when it is intermittent
and noisy.

In this study, we assume that we have independent records of the position and velocity
of a moving object at a sequence of observation times. Traditional methods often assume
motion with constant speed between two observations times, but this will not work well in
our case. Additionally, motivated by the fact that tractors often work in open fields, we
assume no further information is available to constrain the position of the object. Initially,
we constructed trajectories in terms of a Hermite cubic spline basis [18,19]. In each interval,
the reconstruction is clearly continuous, as are its first and second derivatives. The goal
is then to connect the piecewise splines keeping the trajectory and its first derivative
continuous at the interior knots. In this approach, the trajectory is not required to pass
through each knot and the main objective is the smoothness of the path, not a shortest or
minimum-time path. To formalize this procedure, we propose a new objective function
that incorporates velocity information and includes an adaptive penalty term. The penalty
term utilises information about the distance and travel time on each interval. We dub the
proposed smoothing spline the V-spline because it incorporates velocity information and
can be applied to vehicle and vessel tracking. We show that the V-spline works better
than other methods in simulation studies and that it produces satisfactory outcomes in a
real-world application.

The structure of this paper is as follows: in Section 2, we introduce the basis functions
and the V-spline objective function that depends both on position residuals yi − f (ti) and
velocity residuals vi − f ′(ti). A new parameter γ in the objective function controls the
degree to which the velocity information is used in the reconstruction. We show that
the V-spline can be written in terms of modified Hermite spline basis functions. We also
introduce a particular adaptive V-spline that seeks to control the impact of irregularly
sampled observations and noisy velocity measurements. In Section 3, a cross-validation
scheme for estimating the V-spline parameters is given. Section 4 details the performance
of the V-spline on simulated data based on the Blocks, Bumps, HeaviSine and Doppler
test signals [20]. Finally, an application of the V-spline to a two-dimensional data set is
presented in Section 5. R code for implementing V-spline and reproducing our outcomes is
provided as Appendices A–C at the end of the manuscript.
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2. V-Spline
2.1. Objective Function

Conventional smoothing spline estimates of f (t) appear as a solution to the following
minimization problem: find f̂ ∈ C(2)[a, b] that minimizes the penalized residual sum
of squares,

RSS =
n

∑
i=1

(yi − f (ti))
2 + λ

∫ b

a

(
f ′′(t)

)2dt (1)

for a pre-specified value λ > 0 [21–23]. The objective function combines goodness-of-fit to
the data with a measure of roughness [24].

For V-splines, we consider the situation of paired position data y = {y1, . . . , yn}
and velocity data v = {v1, . . . , vn} at a sequence of times satisfying a = t0 ≤ t1 < t2 <

· · · < tn ≤ tn+1 = b. For f ∈ C(2)p.w.[a, b], where the second derivative of f (t) is piecewise
continuous, we define the objective function

J[ f ] =
1
n

n

∑
i=1

(yi − f (ti))
2 +

γ

n

n

∑
i=1

(
vi − f ′(ti)

)2
+
∫ b

a
λ(t)

(
f ′′(t)

)2dt, (2)

where γ > 0, and we have chosen the penalty function λ(t) to be a piecewise constant
function on interior intervals, i.e for t ∈ [ti, ti+1), i = 1, . . . , n− 1,

λ(t) = λi. (3)

In fact, each fi ∈ C
(2)
[ti ,ti+1]

is a Hermite spline which satisfies the properties of a cubic
spline. The complete spline function f , which connects all fis, has piecewise continuous
second derivative, and will be continuous if a particular condition is met. The second
derivative f ′′ is zero on the exterior intervals [a, t1] and [tn, b]. From now on, we will
understand λ(t) to be piecewise constant (3), and we will often use λ to refer to the set
of λi.

Theorem 1. For n ≥ 2, the objective function J[ f ] is uniquely minimized by a V-spline, piecewise
on the intervals [ti, ti+1), i = 1, . . . , n− 1, and linear on [a, t1] and [tn, b].

The proof of Theorem 1 is in Appendix B.
Remark: In the language of splines, the points t1, . . . , tn are the interior knots of the

V-spline, and a = t0, b = tn+1 are the exterior or boundary knots.

2.2. Basis Functions

The cubic Hermite spline f (i)(t) on an arbitrary interval [ti, ti+1) with two consecutive
points {yi, vi} and {yi+1, vi+1} is expressed as

f (i)(t) = h(i)00 (t)yi + h(i)10 (t)vi + h(i)01 (t)yi+1 + h(i)11 (t)vi+1, (4)



Sensors 2021, 21, 3215 4 of 16

where the basis functions are

h(i)00 (t) =

2
(

t−ti
ti+1−ti

)3
− 3
(

t−ti
ti+1−ti

)2
+ 1 ti ≤ t < ti+1

0 otherwise
, (5)

h(i)10 (t) =


(t−ti)

3

(ti+1−ti)
2 − 2 (t−ti)

2

ti+1−ti
+ (t− ti) ti ≤ t < ti+1

0 otherwise
, (6)

h(i)01 (t) =

−2
(

t−ti
ti+1−ti

)3
+ 3
(

t−ti
ti+1−ti

)2
ti ≤ t < ti+1

0 otherwise
, (7)

h(i)11 (t) =


(t−ti)

3

(ti+1−ti)
2 −

(t−ti)
2

ti+1−ti
ti ≤ t < ti+1

0 otherwise
. (8)

For V-splines, a slightly more convenient basis is given by {Nk(t)}2n
k=1, where N1(t) =

h(1)00 (t), N2(t) = h(1)10 (t), and for all i = 1, 2, . . . , n− 2, we have

N2i+1(t) = h(i)01 (t) + h(i+1)
00 (t),

N2i+2(t) = h(i)11 (t) + h(i+1)
10 (t),

and

N2n−1(t) =

{
h(n−1)

01 (t) if t < tn

1 if t = tn
,

N2n(t) = h(n−1)
11 (t).

Therefore, any f ∈ C(2)p.w.[a, b] can then be represented in the form

f (t) =
2n

∑
k=1

Nk(t)θk, (9)

where {θk}2n
k=1 are parameters corresponding with the “true” position f (ti) and velocity

f ′(ti) at the observation points.

2.3. Computing the V-Spline

In terms of the basis functions in the previous section, the objective function (2) is
given by

nJ[ f ](θ, λ, γ) = (y− Bθ)>(y− Bθ) + γ(v− Cθ)>(v− Cθ) + nθ>Ωλθ, (10)

where B and C are n× 2n matrices with components

[B]ij = Nj(ti) =

{
1, j = 2i− 1
0, otherwise

(11)

[C]ij = N′j (ti) =

{
1, j = 2i
0, otherwise

(12)

and Ωλ is a 2n× 2n matrix with components [Ωλ]jk =
∫ b

a λ(t)N′′j (t)N′′k (t)dt. In the follow-
ing, we reserve the use of boldface for n× 1 vectors and n× n matrices.

The detailed structure of Ωλ is presented in Appendix A. It is convenient to write
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Ωλ = ∑n−1
i=1 λiΩ(i), where [Ω(i)]jk =

∫ ti+1
ti

N′′j (t)N′′k (t)dt. It is then evident that Ωλ is a
bandwidth four matrix.

Since Equation (10) is a quadratic form in terms of θ, it is straightforward to establish
that the objective function is minimized at

θ̂ =
(

B>B + γC>C + nΩλ

)−1(
B>y + γC>v

)
, (13)

which can be identified as a generalized ridge regression. The fitted V-spline is then given
by f̂ (t) = ∑2n

k=1 Nk(t)θ̂k.
The V-spline is an example of a linear smoother [25]. This is because the estimated

parameters in Equation (13) are a linear combination of y and v. Denoting by f̂ and f̂′ the
vector of fitted values f̂ (ti) and f̂ ′(ti) at the training points ti, we have

f̂ = B
(

B>B + γC>C + nΩλ

)−1(
B>y + γC>v

)
:= Sλ,γy + γTλ,γv (14)

f̂′ = C
(

B>B + γC>C + nΩλ

)−1(
B>y + γC>v

)
:= Uλ,γy + γVλ,γv (15)

where Sλ,γ, Tλ,γ, Uλ,γ and Vλ,γ are smoother matrices that depend only on ti, λ(t) and γ.
It is not hard to show that Sλ,γ and Vλ,γ are symmetric, positive semi-definite matrices.
Note that Tλ,γ = U>λ,γ.

Corollary 1. If f (t) is a V-spline, then, for almost all y and v, f ′′(t) is continuous at the knots if
and only if γ = 0 and λi = λ0, for all i = 1, . . . , n− 1.

2.4. Adaptive V-Spline

Until now, we have not explicitly considered the impact of irregularly sampled obser-
vations of noisy measurements of velocity on trajectory reconstruction. In order to do this,
it is instructive to evaluate the contribution to the penalty term from the interval [ti, ti+1).
Using (4), it is relatively straightforward to show that

f̂ ′′(t) =
1

ti+1 − ti

{
6
(
ε+i + ε−i

) t− ti
ti+1 − ti

− 2
(
2ε+i + ε−i

)}
, (16)

where ε+i = vi − v̄i, ε−i = vi+1 − v̄i and v̄i = (yi+1 − yi)/(ti+1 − ti) is the average velocity
over the interval. The ε±i can be interpreted as the difference at time ti and t−i+1 respectively
between the velocity implied by an interpolating Hermite spline and the velocity implied
by a straight line reconstruction.

The contribution to the penalty term is then

4λi
(ε+i )

2 + ε+i ε−i + (ε−i )
2

∆Ti
, (17)

where ∆Ti = ti+1 − ti. We call the quantity (ε+i )
2 + ε+i ε−i + (ε−i )

2, the square of the discrep-
ancy of the velocity on the interval [ti, ti+1).

As a consequence of (17), larger time intervals will tend to contribute less to the
penalty term (other things being equal). However, this is exactly when we would expect
the velocity at the endpoints of the interval to provide less useful information about the
trajectory over the interval. In the case when the observed change in position is small, i.e.,
when yi+1 − yi = v̄i∆Ti ≈ 0, over-reliance on noisy measurements of velocity will result in
“wiggly” reconstructions. In these two instances—graphically depicted in Figure 1a—we
would like the V-spline to adapt and to favor straighter reconstructions; this is a deliberate
design choice. We can achieve this by choosing

λi = η
∆Ti

v̄2
i

, (18)
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where η is a parameter to be estimated. The penalty term then takes a particularly com-
pelling form: the contribution from the interval [ti, ti+1) (17) is proportional to(

discrepancy in velocity
average velocity

)2
(19)

for all i. We call the resulting spline the adaptive V-spline. The spline when λi = λ0 or, more
accurately, when λi is independent of ∆Ti and v̄i, we call it the non-adaptive V-spline.

ti ti+1

yi yi+1

vi

vi+1

t

y

(a) cubic Hermite spline reconstruction

ti ti+1

yi yi+1

vi

vi+1

t

(b) straight line reconstruction
Figure 1. Comparing cubic Hermite spline reconstruction and straight line reconstruction. When
∆Ti = ti+1 − ti is large or v̄i∆Ti = yi+1 − yi is small, the adaptive V-spline favours straighter
reconstructions.

3. Parameter Selection and Cross-Validation

The issue of choosing the smoothing parameter is ubiquitous in curve estimation and
there are two different philosophical approaches to the problem. The first is to regard the
free choice of smoothing parameter as an advantageous feature of the procedure. The
second is to let the data determine the parameter [22,26], using a procedure such as cross-
validation (CV) or generalized cross-validation (GCV) [21]. We prefer the latter and use the
data with GCV to train our model and find the best parameters.

In standard regression, which assumes the mean of the observation errors is zero, the
true regression curve f (t) has the property that, if an observation yi is omitted at time point
ti, the value f (ti) is the best predictor of yi in terms of mean squared error [22]. We use this
observation to motivate a leave-one-out cross-validation scheme to estimate λ and γ for
both the non-adaptive and the adaptive V-splines.

Let f̂ (−i)(t, λ, γ) be the minimizer of

1
n ∑

j 6=i

(
yj − f (tj)

)2
+

γ

n ∑
j 6=i

(
vj − f ′(tj)

)2
+
∫ b

a
λ(t)

(
f ′′(t)

)2dt, (20)

and define the cross-validation score

arg min
λ,γ>0

CV(λ, γ) = arg min
λ,γ>0

n

∑
i=1

(
yi − f̂ (−i)(ti, λ, γ)

)2
. (21)

We then choose λ and γ that jointly minimize CV(λ, γ).
The following theorem establishes that we can compute the cross-validation score

without knowing the f̂ (−i)(t, λ, γ):
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Theorem 2. The cross-validation score of a V-spline satisfies

arg min
λ,γ>0

CV(λ, γ) = arg min
λ,γ>0

n

∑
i=1

(
yi − f̂ (ti) + γ Tii

1−γVii
(vi − f̂ ′(ti))

1− Sii − γ Tii
1−γVii

Uii

)2

, (22)

where f̂ is the V-spline smoother calculated from the full data set with smoothing parameter λ and
γ, and Sii = [Sλ,γ]ii, etc.

The proof of Theorem 2 is in Appendix C.

4. Simulation Study

In this section, we give an extensive comparison of methods for equal-spaced data.
The comparison is based on the ability to reconstruct trajectories derived from Blocks,
Bumps, HeaviSine and Doppler, which were used in [20,27,28] to mimic problematic features
in imaging, spectroscopy and other types of signal processing.

Letting g(t) denote any one of Blocks, Bumps, HeaviSine or Doppler, we treat g(t) as the
instantaneous velocity of the trajectory f (t) at time t, i.e., f ′(t) = g(t). Setting f (t1) = 0,
the position is then updated in terms of the average velocity over each interval:

f (ti+1) = f (ti) +
g(ti) + g(ti+1)

2
(ti+1 − ti), (23)

which is accurate to the second order in ti+1− ti. Finally, the observed position and velocity
are found by adding i.i.d. zero-mean Gaussian noise:

yi = f (ti) + ε
( f )
i ,

vi = g(ti) + ε
(g)
i ,

(24)

where ε
( f )
i ∼ N(0, σf /SNR), ε

(g)
i ∼ N(0, σg/SNR), σf is the standard deviation of the

positions f (ti), σg is the standard deviation of the velocities g(ti), and SNR is the signal-to-
noise ratio, which we take to be 3 or 7.

We compare the performance of the adaptive V-spline with a spatially adaptive
penalized spline known as the P-spline with the function asp2 from the package AdaptFi-
tOS [29–31], a generalized additive model gam from the package mgcv [32,33], the kinematic
interpolation approach (KI) by [16], as well as the adaptive V-spline with γ = 0, which
becomes a conventional spline with Hermite basis functions, and the non-adaptive V-spline
where λ0 is a constant. It is important to note that only the KI approach, the non-adaptive
and adaptive V-splines incorporate velocity information. The V-spline parameters are
obtained by minimizing the cross-validation score (22). In the gam model, we use tp basis
functions with 1024 knots. For the KI approach, the position at time ti is interpolated from
the two neighbouring points at ti−1 and ti+1. (The positions at t1 and tn are interpolated
from points at (t1, t2) and (tn−1, tn), respectively.) Following [34], we fix n = 1024 in
the simulations.

To examine the performance of the adaptive V-spline, we compute the true mean
squared error for each of the reconstructions via:

TMSE =
1
n

n

∑
i=1

(
f (ti)− f̂ (ti)

)2
, (25)

and the Modified Nash–Sutcliffe efficiency (mNSE) [35] via:

mNSE = 1−
∑n

i=1

∣∣∣ f (ti)− f̂ (ti)
∣∣∣

∑n
i=1
∣∣ f (ti)− f̄

∣∣ . (26)
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The results are shown in Tables 1 and 2. The V-spline, either adaptive or non-adaptive,
returns the best solution in all cases.

Table 1. TMSE: * indicates the best solution (smallest error).

TMSE
(10−6) SNR Adpt VS

Non-
Adpt
VS

VSγ=0 P-Spline gam KI

Blocks
7 1.753 * 1.778 54.257 52.702 53.224 826.497

3 17.036 15.339 * 152.391 145.118 154.467 4499.818

Bumps
7 1.701 1.568 * 23.436 23.447 23.446 219.259

3 8.865 * 8.980 77.774 78.808 76.080 1193.743

HeaviSine
7 1.558 * 1.562 7.768 9.337 7.873 207.412

3 4.360 * 8.557 33.492 34.361 33.132 1129.242

Doppler
7 1.516 0.956 * 6.668 6.406 6.435 56.910

3 8.092 * 8.255 22.135 22.088 22.655 309.842

Table 2. mNSE: * indicates the best solution (closest to 1).

mNSE SNR Adpt VS
Non-
Adpt
VS

VSγ=0 P-Spline gam KI

Blocks
7 0.9954 * 0.9953 0.9749 0.9750 0.9752 0.9037

3 0.9864 * 0.9870 0.9562 0.9569 0.9555 0.7753

Bumps
7 0.9917 0.9921 * 0.9700 0.9700 0.9703 0.9097

3 0.9811 * 0.9810 0.9442 0.9428 0.9443 0.7893

HeaviSine
7 0.9915 * 0.9915 0.9820 0.9802 0.9818 0.9058

3 0.9855 * 0.9802 0.9624 0.9617 0.9625 0.7803

Doppler
7 0.9820 0.9857 * 0.9646 0.9648 0.9646 0.8928

3 0.9579 * 0.9575 0.9347 0.9333 0.9323 0.7499

The reason for the poor performance of kinematic interpolation is two-fold: first,
KI assumes vi is a good approximation to the velocity over the entire interval [ti−1, ti+1).
Second, KI is not a true smoother so it is prone to errors in the observations. In contrast,
the V-spline successfully smooths and interpolates in the presence of noise.

Table 3 shows the ability of the adaptive V-spline to retrieve the true SNR: for recon-
struction f̂ , it is estimated by σ f̂ /σ( f̂−y). Table 3 shows that the estimates from the V-spline

f̂ are very close to the true values.

Table 3. Retrieved SNR by adaptive V-spline.

SNR True Value f Known V-Spline f̂

Blocks
7 6.9442 6.9485

3 2.9761 2.9817

Bumps
7 6.9442 6.9548

3 2.9761 2.9953

HeaviSine
7 6.9442 6.9207

3 2.9761 2.9891

Doppler
7 6.9442 6.8757

3 2.9761 2.9372
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In summary, the simulation study has shown the ability of V-splines to accurately
reconstruct trajectories from noisy and potentially problematic velocity profiles. The
V-spline outperforms methods that do not use velocity information, and its smoothing
strategy appears to be vastly superior to that of kinematic interpolation.

5. Inference of Tractor Trajectory

In this section, we apply the V-spline to a data set obtained from a GPS unit mounted
on a tractor working in a horticultural setting. The motivating problem in this context is to
accurately record where pesticide has been applied to ensure that neither over-spraying or
under-spraying has occurred.

GPS units in vehicles provide yt, noisy measurements of the actual position xt, and
vt, noisy measurements of the actual velocity ut, for a sequence of times t ∈ T, which is
irregularly recorded with highly variable time differences ∆Ti. These data may also be
augmented with information on operating characteristics of the vehicle, bt, in this case
data on whether the tractor boom was in a raised or lowered position. The trajectory
reconstruction problem is the problem of estimating xs, for an arbitrary time s, given a
subset of the observations {yt, vt, bt | t ∈ T}. Note that, in this definition of trajectory
reconstruction, we are not explicitly interested in estimating us.

The original data set consists of n = 928 records of longitude, latitude, speed, bearing
and the status of the tractor’s boom sprayer. The boom status, “up” and “down”, denotes
the operational state of the tractor, and indicates different types of trajectories. For example,
if boom status is “down”, the tractor is probably sowing, watering or harvesting on the
farm. In this scenario, the speed is stable and its variance is low. On the contrary, when
it is “up”, the speed could be high because the driver is travelling between jobs, it could
be zero because the driver is having a break, or it might indicate the tractor is turning. In
this last situation, however, the acceleration could be high. For this reason, we add further
complexity to the model by allowing the penalty parameter to depend on boom status.

For trajectory reconstruction, this data set was converted from longitude and latitude in
degrees (◦) into easting and northing in meters (m) by the Universal Transverse Mercator
(UTM) coordinate system. The speed and bearing were converted into velocities (m/s) in
those directions as well. See Figure 2.
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∆
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Figure 2. A real GPS data set of tractor movements. Observed positions in two dimensions on the
left and irregular time differences indicated on the right. In trajectory reconstruction, the positions
are combined with velocity information and operating characteristics of the tractor to infer actual
positions for times of interest. Crosses indicate the boom is working; circles indicate it is not working.

5.1. The V-Spline in d-Dimensions

To generalize the V-spline to d-dimensions, we consider the situation preceding
Equation (2) but where now yi, vi ∈ Rd. Then, the function f : [a, b] → Rd is a d-
dimensional V-spline if it minimizes:

J[ f ] =
1
n

n

∑
i=1
‖yi − f (ti)‖2

d +
γ

n

n

∑
i=1
‖vi − f ′(ti)‖2

d +
∫ b

a
λ(t)‖ f ′′(t)‖2

ddt, (27)
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where ‖ · ‖2 is the Euclidean norm in d-dimensions. For each direction α = 1, . . . , d, the
fitted V-spline has the form f̂ α(t) = ∑2n

k=1 Nk(t)θ̂α
k , where

θ̂α =
(

B>B + γC>C + nΩλ

)−1(
B>yα + γC>vα

)
. (28)

The parameters λ and γ are estimated by minimizing the cross-validation score:

arg min
λ,γ>0

CV(λ, γ) = arg min
λ,γ>0

n

∑
i=1

∥∥∥∥∥yi − f̂ (ti) + γ Tii
1−γVii

(vi − f̂ ′(ti))

1− Sii − γ Tii
1−γVii

Uii

∥∥∥∥∥
2

d

. (29)

In what follows, we allow the non-adaptive and adaptive V-splines to depend on
the boom status. This is to demonstrate that our method can simply and usefully also
incorporate known covariates. In this application, letting bi = 0 denote boom “up”, bi = 1
denote boom “down”, and v̄i = ‖yi+1 − yi‖2/∆Ti be the average velocity on the interval
[ti, ti+1), the penalty term for the non-adaptive V-spline is

λi = biλd + (1− bi)λu, (30)

and, for the adaptive V-spline, it is

λi =
{

biλd + (1− bi)λu
}∆Ti

v̄2
i

. (31)

Optimization in (29) is now simply with respect to positive λd, λu and γ.

5.2. Two-Dimensional Trajectory Reconstruction

The V-spline reconstruction from the tractor data is shown in Figure 3. The parameters
λd, λu and γ are found by our proposed cross-validation scheme using the stats ::optim
function in R [36]. It is immediately evident from the trajectory that the tractor has been
moving up and down rows of an orchard or travelling between parts of the orchard.

−1000

−500

0

500

0 400 800Easting

N
or

th
in

g start

end

Figure 3. Reconstruction of the complete real GPS data set; “start” and “end” indicate the start and
end points of the trajectory.

It is instructive to compare the performance of the adaptive V-spline to a line-based
approach that simply and unrealistically connects observations by a straight line, kinematic
interpolation which also utilizes velocity information, and the non-adaptive V-spline.
Figure 4 shows finer detail of the tractor trajectory given by these reconstructions. A feature
of the KI method is the hugely unrealistic excursions near the turn-around points at the end
of each row as shown in Figure 4b. On the contrary, the adaptive V-spline, see Figure 4d,
adapts to the information based on observed velocity discrepancy to avoid such excursions.
Without the adaptive term (18), the non-adaptive V-spline performs in a similar way to KI,
which can be seen from Figure 4c; this proves the power of the adaptive penalty.
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200
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(a) Reconstruction by line-based approach

200 400 600

(b) Reconstruction by KI approach

200

400

600

200 400 600

(c) Reconstruction by non-adaptive V-spline

200 400 600

(d) Reconstruction by adaptive V-spline

Figure 4. A comparison of the reconstructions by a line-based approach, kinematic interpolation,
non-adaptive V-spline, and adaptive V-spline. KI relies on misleading velocity information that
generates unrealistic trajectories. The non-adaptive V-spline also generates unrealistic trajectories at
sharp-turning and braking points. However, the adaptive V-spline adapts to the information based
on observed velocity discrepancy and generates plausible trajectories.

6. Discussion

In this paper, a smoothing spline called the V-spline is proposed that minimizes
an objective function which incorporates both position and velocity information. Given
n knots, the V-spline has 2n effective degrees of freedom corresponding to n − 1 cubic
polynomials with their value and first derivative matched at the n− 2 interior knots. The
effective degrees of freedom are then fixed by n position observations and n velocity
observations. Note that, in the limit γ → 0, the V-spline reduces to having n effective
degrees of freedom. An adaptive version of the V-spline is also introduced that seeks to
control the impact of irregularly sampled observations and noisy velocity measurements.

The computational complexity of the V-spline method is equivalent to any smoothing
spline that uses a cross-validation procedure to estimate the tuning parameters. The
essential difference is that the V-spline incorporates 2n data points (in each dimension),
as opposed to n. The impact of this shows up in the time to solve for θ̂ in (13). Thus,
the computation time of the V-spline is the same as a standard smoothing spline with 2n
observations. Modest computational gains can possibly be made by improving the CV
parameter estimation step, but Theorem 2 already assures us that this step is highly efficient.
Future research directions for the V-spline include application to ship tracking [18] and
development of a fast filtering algorithm.
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Appendix A. Penalty Matrix in (10)

We have Ωλ = ∑n−1
i=1 λiΩ(i), where [Ω(i)]jk =

∫ ti+1
ti

N′′j (t)N′′k (t)dt. Thus, Ω(i) is a
2n× 2n bandwidth four symmetric matrix and its non-zero, upper triangular elements are

Ω(i)
2i−1,2i−1 =

∫ ti+1

ti

d2h(i)00 (t)
dt2

d2h(i)00 (t)
dt2 dt =

12
∆T3

i
(A1)

Ω(i)
2i−1,2i =

∫ ti+1

ti

d2h(i)00 (t)
dt2

d2h(i)10 (t)
dt2 dt =

6
∆T2

i
(A2)

Ω(i)
2i−1,2i+1 =

∫ ti+1

ti

d2h(i)00 (t)
dt2

d2h(i)01 (t)
dt2 dt =

−12
∆T3

i
(A3)

Ω(i)
2i−1,2i+2 =

∫ ti+1

ti

d2h(i)00 (t)
dt2

d2h(i)11 (t)
dt2 dt =

6
∆T2

i
(A4)

Ω(i)
2i,2i =

∫ ti+1

ti

d2h(i)10 (t)
dt2

d2h(i)10 (t)
dt2 dt =

4
∆Ti

(A5)

Ω(i)
2i,2i+1 =

∫ ti+1

ti

d2h(i)10 (t)
dt2

d2h(i)01 (t)
dt2 dt =

−6
∆T2

i
(A6)

Ω(i)
2i,2i+2 =

∫ ti+1

ti

d2h(i)10 (t)
dt2

d2h(i)11 (t)
dt2 dt =

2
∆Ti

(A7)

Ω(i)
2i+1,2i+1 =

∫ ti+1

ti

d2h(i)01 (t)
dt2

d2h(i)01 (t)
dt2 dt =

12
∆T3

i
(A8)

Ω(i)
2i+1,2i+2 =

∫ ti+1

ti

d2h(i)01 (t)
dt2

d2h(i)11 (t)
dt2 dt =

−6
∆T2

i
(A9)

Ω(i)
2i+2,2i+2 =

∫ ti+1

ti

d2h(i)11 (t)
dt2

d2h(i)11 (t)
dt2 dt =

4
∆Ti

(A10)

where ∆Ti = ti+1 − ti and i = 1, 2, . . . , n− 1.
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Appendix B. Proof of Theorem 1

For n ≥ 2, the objective function J[ f ] is uniquely minimized by a V-spline, piecewise on the
intervals [ti, ti+1), i = 1, . . . , n− 1, and linear on [a, t1] and [tn, b].

Our proof is an extension of the smoothing spline proof in [22].

Proof. If g : [a, b]→ R is a proposed minimizer, construct a cubic spline f (t) that agrees
with g(t) as well as f ′(t) agrees with g′(t) at t1, . . . , tn, and is linear on [a, t1] and [tn, b]. Let
h(t) = g(t)− f (t). Then, for i = 1, . . . , n− 1,

∫ ti+1

ti

f ′′(t)h′′(t)dt = f ′′(t)h′(t)
∣∣∣∣ti+1

ti

−
∫ ti+1

ti

f ′′′(t)h′(t)dt

= 0− f ′′′
(
t+i
) ∫ ti+1

ti

h′(t)dt

= − f ′′′
(
t+i
)
(h(ti+1)− h(ti)) = 0.

Additionally,
∫ t1

a f ′′(t)h′′(t)dt =
∫ b

tn
f ′′(t)h′′(t)dt = 0, since f (t) is assumed linear

outside the knots. Thus, for i = 0, . . . , n,∫ ti+1

ti

|g′′(t)|2dt =
∫ ti+1

ti

| f ′′(t) + h′′(t)|2dt

=
∫ ti+1

ti

| f ′′(t)|2dt + 2
∫ ti+1

ti

f ′′(t)h′′(t)dt +
∫ ti+1

ti

|h′′(t)|2dt

=
∫ ti+1

ti

| f ′′(t)|2dt +
∫ ti+1

ti

|h′′(t)|2dt

≥
∫ ti+1

ti

| f ′′(t)|2dt.

The result J[ f ] ≤ J[g] follows since λi > 0.
Furthermore, equality of the curvature penalty term only holds if g(t) = f (t). On

[t1, tn], we require h′′(t) = 0 but since h(ti) = h′(ti) = 0 for i = 1, . . . , n, this means
h(t) = 0. Meanwhile on [a, t1] and [tn, b], f ′′(t) = 0 so that equality requires g′′(t) = 0.
Since f (t) agrees with g(t) and as well as f ′(t) agrees with g′(t) at t1 and tn, equality is
forced on both intervals.

Appendix C. Proof of Theorem 2

The cross-validation score of a V-spline satisfies

arg min
λ,γ>0

CV(λ, γ) = arg min
λ,γ>0

n

∑
i=1

(
yi − f̂ (ti) + γ Tii

1−γVii
(vi − f̂ ′(ti))

1− Sii − γ Tii
1−γVii

Uii

)2

,

where f̂ is the V-spline smoother calculated from the full data set with smoothing parameter λ and
γ, and Sii = [Sλ,γ]ii, etc.

Proof. We start with the following lemma:
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Lemma A1. For λ(t), γ and for fixed i, let f(−i) be the vector with components f (−i)
j =

f̂ (−i)(tj, λ, γ
)
, f′(−i) by the vector with components f ′(−i)

j = f̂ ′(−i)(tj, λ, γ
)
, and define vec-

tors y∗ be the vector of y∗i and v∗ be the vector of v∗i by{
y∗j = yj j 6= i

y∗i = f̂ (−i)(ti) otherwise
(A11){

v∗j = vj j 6= i

v∗i = f̂ ′(−i)(ti) otherwise
(A12)

Then,

f̂(−i) = Sy∗ + γTv∗ (A13)

f̂′(−i) = Uy∗ + γVv∗ (A14)

Proof of Lemma A1. For any smooth curve f with y∗ and v∗, we have

1
n

n

∑
j=1

(
y∗j − f (tj)

)2
+

γ

n

n

∑
j=1

(
v∗j − f ′(tj)

)2
+

n

∑
j=1

λj

∫ tj+1

tj

( f ′′(t))2dt

≥ 1
n ∑

j 6=i

(
y∗j − f (tj)

)2
+

γ

n ∑
j 6=i

(
v∗j − f ′(tj)

)2
+

n

∑
j=1

λj

∫ tj+1

tj

( f ′′(t))2dt

≥ 1
n ∑

j 6=i

(
y∗j − f̂ (−i)(tj)

)2
+

γ

n ∑
j 6=i

(
v∗j − f̂ ′(−i)(tj)

)2
+

n

∑
j=1

λj

∫ tj+1

tj

(
f̂
′′(−i)(t)

)2
dt

=
1
n

n

∑
j=1

(
y∗j − f̂ (−i)(tj)

)2
+

γ

n

n

∑
j=1

(
v∗j − f̂ ′(−i)(tj)

)2
+

n

∑
j=1

λj

∫ tj+1

tj

(
f̂
′′(−i)(t)

)2
dt.

By the definition of f̂(−i), f̂′(−i) and the fact that y∗i = f̂ (−i)(ti), v∗i = f̂ ′(−i)(ti). It
follows that f̂ (−i) is the minimizer of the objective function (2), so that

f̂(−i) = Sy∗ + γTv∗

f̂′(−i) = Uy∗ + γVv∗

as required.

As a consequence of lemma A1, we obtain expressions for the deleted residuals
yi − f̂ (−i)(ti) and vi − f̂ ′(−i)(ti) in terms of yi − f̂ (ti) and vi − f̂ ′(ti), respectively:

f̂ (−i)(ti)− yi =
n

∑
j=1

Sijy∗j + γ
n

∑
j=1

Tijv∗j − yi

=
n

∑
j 6=i

Sijyj + γ
n

∑
j 6=i

Tijvj + Sii f̂ (−i)(ti) + γTii f̂ ′(−i)(ti)− yi

=
n

∑
j=1

Sijyj + γ
n

∑
j=1

Tijvj + Sii

(
f̂ (−i)(ti)− yi

)
+ γTii

(
f̂ ′(−i)(ti)− vi

)
− yi

=
(

f̂ (ti)− yi

)
+ Sii

(
f̂ (−i)(ti)− yi

)
+ γTii

(
f̂ ′(−i)(ti)− vi

)
(A15)
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and

f̂ ′(−i)(ti)− vi =
n

∑
j=1

Uijy∗j + γ
n

∑
j=1

Vijv∗j − vi

=
n

∑
j 6=i

Uijyj + γ
n

∑
j 6=i

Vijvj + Uii f̂ (−i)(ti) + γVii f̂ ′(−i)(ti)− vi

=
n

∑
j=1

Uijyj + γ
n

∑
j=1

Vijvj + Uii

(
f̂ (−i)(ti)− yi

)
+ γVii

(
f̂ ′(−i)(ti)− vi

)
− vi

=
(

f̂ ′(ti)− vi

)
+ Uii

(
f̂ (−i)(ti)− yi

)
+ γVii

(
f̂ ′(−i)(ti)− vi

)
.

(A16)

Thus,

f̂ ′(−i)(ti)− vi =
f̂ ′(ti)− vi
1− γVii

+
Uii

(
f̂ (−i)(ti)− yi

)
1− γVii

. (A17)

By substituting Equation (A17) into (A15), we obtain

f̂ (−i)(ti)− yi =
f̂ (ti)− yi + γ Tii

1−γVii

(
f̂ ′(ti)− vi

)
1− Sii − γ Tii

1−γVii
Uii

.

Consequently,

arg min
λ,γ>0

CV(λ, γ) = arg min
λ,γ>0

n

∑
i=1

 f̂ (ti)− yi + γ Tii
1−γVii

(
f̂ ′(ti)− vi

)
1− Sii − γ Tii

1−γVii
Uii

2

.
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