
MA 323 Geometric Modelling

Course Notes: Day 12

de Casteljau’s Algorithm and Subdivision

David L. Finn

Yesterday, we introduced barycentric coordinates and de Casteljau’s algorithm. Today, we
want to go more in depth into the mechanics of de Casteljau’s algorithm, and understand
some of the nuances of the algorithm. We also want to discuss the efficiency of this algorithm
in creating the curve. The algorithm’s power is not necessarily in defining a polynomial
curve, but in how the algorithm can approximate the curve it produces very quickly. In
particular, de Casteljau’s algorithm admits can be viewed as a subdivision method for
creating an approximation to the curve.

The idea of a subdivision method is a useful idea in geometric modelling and any numerical
algorithm that employs recursion. A subdivision method is a recursive method for creating
an approximation. For de Casteljau’s algorithm, the subdivision method is based on noticing
that the control polyline to the curve basically provides the shape of the curve. Moreover,
when applying de Casteljau’s algorithm the curve is further approximated by the portions
of lines drawn. The subdivision algorithm provides a method for defining the points needed
to approximate the curve.

12.1 de Casteljau’s algorithm revisited

Yesterday, we introduced the algorithm as a method for creating a curve by repeated linear
interpolation from a collection of points. In particular, the algorithm is

From the control points p0, p1, · · · , pn, we define points on the line segments
pipi+1 (the control polyline) by choosing a value t and defining p1

i = (1− t) pi +
t pi+1. Notice that we defined n points in this manner as i = 0, 1, 2, · · · , n − 1.
From the n points p1

i , we can repeat the process and define the n − 1 points
p2

i = (1− t) p1
i + t p1

i+1 on the line segments p1
i p

1
i+1. This process can be repeated

defining
pj+1

i = (1− t) pj
i + t pj

i+1

for i = 0, 1, 2, · · · , n− j − 1 for j = 0, 1, 2, · · · , n− 1 where p0
i = pi. The end of

this process produces a point pn
0 on a polynomial curve of degree n. An example

of this procedure is shown in the diagram below constructing a cubic curve.

Notice to calculate one point on the curve, we need to calculate the position of n points on the
control polyline. Then, we calculate n−1 points using the line segments of the first n control
points, and so on. Thus, we need to calculate n+(n−1)+(n−2)+ · · ·+2+1 = n(n+1)/2
points to calculate one point, see diagram above

de Casteljau’s algorithm applied to n+1 control points generates an nth degree polynomial
curve. This follows from an inductive argument. We have demonstrated this algorithm for



12-2

���

���

���

���

���
�

���
�

���
�

���
�

���
����

�

Figure 1: Construction of a curve by repeated linear interpolation

parabolas. If we assume that with n points, we get a n− 1th degree polynomial curve. We
note that the point pn−1

0 is obtained by applying de Casteljau’s algorithm to the control
points p0, p1, · · · , pn−1, and thus is a n− 1th degree polynomial curve. Moreover, the point
pn−1
1 is obtained by applying de Casteljau’s algorithm to the control points p1, p2, · · · , pn,

and therefore is also a n−1th degree polynomial curve. The point pn
0 = (1− t) pn−1

0 + t pn−1
1

on the curve is thus an nth degree polynomial in t. The same sort of inductive argument can
be applied to show that de Casteljau’s algorithm can be written in barycentric coordinates,
that is

c(t) = αn
0 (t) p0 + αn

1 (t) p1 + · · ·+ αn
n(t) pn

where α0(t) + α1(t) + · · ·+ αn(t) = 1. In particular, we have

pn−1
0 (t) = αn−1

0 (t) p0 + αn−1
1 (t) p1 + · · ·αn−1

n−1(t) pn−1

plus
pn−1
1 (t) = αn−1

0 (t) p1 + αn−1
1 (t) p2 + · · ·αn−1

n−1(t) pn

with αn−1
0 (t) + αn−1

1 (t) + · · ·+ αn−1
n−1(t) = 1 by the induction hypothesis. This implies with

c(t) = (1− t) pn−1
0 (t) + t pn−1

1 (t) that for

c(t) = αn
0 (t) p0 + αn

1 (t) p1 + · · ·+ αn
n(t) pn

we have
αn

0 (t) = (1− t) αn−1
0 (t)

αn
1 (t) = (1− t)αn−1

1 (t) + tαn−1
0 (t)

...

αn
i (t) = (1− t)αn−1

i (t) + tαn−1
i−1 (t)

...

αn
n(t) = tαn−1

n−1(t)

and therefore

αn
0 (t) + · · ·+ αn

n(t)

= (1− t) (αn−1
0 (t) + · · ·+ αn−1

n−1(t)) + t (αn−1
0 (t) + · · ·+ αn−1

n−1(t))
= (1− t) + t = 1.



12-3

One can instead expand the algebra, (which we look at after break), and find that each
basis function αi(t) is an nth degree polynomial curve, specifically

αi(t) =
(

n
i

)
ti (1− t)n−i

where
(

n
i

)
is a binomial coefficient that can be computed by Pascal’s triangle.

12.2 A Simple Method for Approximating the Curve

The simplest method approximating the curve created by de Casteljau’s algorithm is to
divide the interval [0, 1] into a collection of subintervals, that is obtaining a partition 0 =
t0 < t1 < t2 < · · · < tn = 1 of the interval [0, 1], and computing the points P (t0), P (t1), · · · ,
P (tn). An approximation of the curve is given by the linear interpolant through these points.
Using more points and equal subdivisions t1 − t0 = t2 − t1 = · · · = tn − tn−1, we obtain a
good approximation to the a continuous curve. This is a direct result of the continuity of
the curve. This method does not take into account any facts about the algorithm. In fact,
this method will work for any curve that is defined on a closed interval. We can increase the
approximation accuracy of the approximation and the decrease the amount of time needed
to compute the approximation by exploiting the nature of the algorithm.

The subdivision algorithm that we will now discuss is built on using some of the intermediate
points in de Casteljau’s algorithm to achieve a good approximation of the curve. This
method relies on the fact that the control polyline provides a first approximation of the curve,
and exploiting a theorem from Euclidean geometry called Menelaus’ theorem. To explain
the method, we will first use the method to construct an approximation of a parabola. Then,
we will write an explicit description of the method.

Given three noncollinear points P0, P1, P2 as in the diagram below. We first apply de
Casteljau’s algorithm with t = 1/2 to obtain the points P 1

0 , P 1
1 , P 2

0 where P 2
0 is on the

parabola. Notice, in this construction the linear interpolant through the points P0 = P 0
0 ,

P 1
0 , P 2

0 , P 1
1 and P 0

2 = P2 forms a better approximation to the parabola than the original
control polyline. Moreover, if we consider the set P 0

0 , P 1
0 and P 2

0 as control points we have
P 0

0 and P 2
0 as points on the parabola and P 1

0 off the parabola, and the intersection of the
tangent lines to the parabola at P 0

0 and P 2
0 . We have a similar statement about the points

P 2
0 , P 1

1 and P 0
2 . In fact, if we apply de Casteljau’s algorithm on the points P 0

0 , P 1
0 , P 2

0 , we
obtain the same parabola. We likewise obtain the same parabola if we apply de Casteljau’s
algorithm on the points P 2

0 , P 1
1 , P 0

2 . Therefore, applying the same procedure on the points
[P 0

0 , P 1
0 , P 2

0 ] and the points [P 2
0 , P 1

1 , P 0
2 ], we will obtain a better approximation with the

corresponding points.

12.3 the Subdivision Method for de Casteljau’s algorithm

In our discussion of the subdivision method for de Casteljau’s algorithm, we will restrict
our attention to using midpoints of line segments. To approximate the curve given by de
Casteljau’s algorithm efficiently, we define an iteration process starting with the sequence
of control points P0, P1, P2, · · · , Pn. The sequence of control points defines the zeroth
iteration as the control polyline (the linear interpolant or piecewise linear curve through the
points P0, P1, · · · , Pn).

In the first iteration of the subdivision algorithm, we use de Casteljau’s algorithm with
t = 1/2 to calculate one point, and thus we split the curve into two segments. de Casteljau’s



12-4

���

���

���

���
�

���
�

���
�

Figure 2: A better approximation to a parabola.

Figure 3: The zeroth iteration of subdivision

algorithm then defines a set of control points that will generate each curve segment. The
control points Pn−i

0 with i = 0, 1, 2, · · · , n generate the segment P (t) with 0 ≤ t ≤ 1/2 and
the control points Pn−i

i with i = 0, 1, 2, · · · , n generates the segment P (t) with 1/2 ≤ t ≤ 1.
The linear interpolant PL1 through the points P 0

0 , P 1
0 , · · · , Pn

0 , Pn−1
1 , Pn−2

2 , · · · , P 0
n (the

control polylines for the segments P (t) with 0 ≤ t ≤ 1/2 and P (t) with 1/2 ≤ t ≤ 1) forms
a better approximation to the curve than PL0. For an illustration see the diagram below.

We continue the process in a recursive manner applying the method onto each segment.
Thus, in the second iteration of the subdivision method, we subdivide the two segments of
the original curve obtaining four segments of the original curve. The third iteration obtains
eight segments of the original curve and so forth. After k iterations, we have 2k segments
of the original curve.

We stated above that the control points P 0
0 , P 1

0 , · · · , Pn
0 produce the segment of the curve

P (t) with 0 ≤ t ≤ 1/2. To show that this is true involves a version of Menelaus’ theorem



12-5

Figure 4: The first iteration of subdivision

Figure 5: The second iteration of subdivision

12.4 A Version of Menelaus’ Theorem

The mathematical construction that allows a multivariate version of de Casteljau’s algo-
rithm to work is Menelaus’ theorem. Other formulations of de Casteljau’s algorithm involve
blossoming. In blossoming, each the subinterval from different iteration are given a different
parameter, i.e. the construction of a parabola is written as

(1− s)((1− t)p0 + tp1) + s((1− t)p1 + tp2).

The parabola is then arrived at using s = t. That it does not matter which variable is
computed first is a result of Menelaus’ theorem.

A version of Menelaus’ theorem is given as let P0, P1, P2 be three points in a plane.
Define the points a0 = (1 − t)P0 + t P1 and a1 = (1 − t)P1 + t P2. Also define the points
b0 = (1− s)P0 + sP1 and b1 = (1− s)P1 + sP2. Using algebra, it is easy to show that

c = (1− s) a0 + s a1 = (1− t) b0 + t b1.



12-6

���

���

���

���

���
	 �

	 �



Figure 6: A CAGD version of Menelaus’s Theorem

This takes on special interest, when we recast it in terms of repeated linear interpolation.
Define

b[0, t] = (1− t) b0 + t b1;
b[1, t] = (1− t) b1 + t b2;
b[s, 0] = (1− s) b0 + s b1;
b[s, 1] = (1− s) b1 + s b2.

Further, define
b[s, t] = (1− s)b[0, t] + sb[1, t]
b[t, s] = (1− t)b[s, 0] + tb[s, 1].

Menelaus’ theorem implies that b[s, t] = b[t, s].

This gives us a multivariate way of repeatedly applying linear interpolation, and will be
tremendously important later when we define surfaces using de Casteljau’s algorithm. Here,
we only need Menelaus’ theorem to show that the subdivision method works. In other
books on geometric modelling, this result is used to motivate other constructions. In par-
ticular, this version of Menelaus’ theorem is used in blossoming. We will not mention in
the remainder of the course, but for those of you who are interested in careers in computer
graphics and CAGD should be aware of blossoming. Blossoming allows one to construct
most of the geometric information about the curve as repeated linear interpolation. For
more information on blossoming consult the text by Farin.

The classical theorem of Menelaus (illustrated above) is stated in terms of ratios and used
to determine when points are collinear. The ratio of three collinear points P , X and Q is
defined through the barycentric coordinates of the middle point X in terms of the points P
and Q. Since X lies on the line P and Q, X can be written in barycentric coordinates as

X = (1− t)P + tQ

for some number t. The ratio of P , X and Q is then defined as

ratio(P, X,Q) =
t

1− t

The ratio(P, X,Q) is equal to the proportion of PX/PQ to XQ/PQ, where PX/PQ and
XQ/PQ are defined by the division of lengths. The classical theorem of Menelaus concerns
the collinearity of points defined through a triangle. Let ABC be a triangle and let X be



12-7

�

�

�

�

�

�

Figure 7: The classical version of the theorem of Menelaus

a point on the line AB, Y be a point on the line BC and Z be a point on the line AC.
Menelaus’ theorem states that the points X, Y and Z are collinear if and only if

ratio(A,X,B) ratio(B, Y, C) ratio(C,Z, A) = −1.

12.5 Why the Subdivision Method Works

From de Casteljau’s algorithm (that the tangent line is given by Pn−1
0 (t) and Pn−1

1 (t))
and facts about parabolas, it should be geometrically obvious that the this holds true for
parabolas. A parabola is well defined by two points and two tangent lines. However, if we
approach this problem (showing that the control points P 0

0 , P 1
0 , P 2

0 generates the segment
of the curve P (t) with 0 ≤ t ≤ 1/2) in a more algebraic manner then we can extend the
method to the general setting.

To understand the application of Menelaus’ theorem to the subdivision method, consider
the diagram below. The CAGD version of Menelaus’ theorem states that the intersection
point X of the lines P 1

0 (1/2)P 1
1 (1/2) and P 1

0 (t) P 1
1 (t) in the diagram below is given by

(1− t) P 1
0 (1/2) + t P 1

1 (1/2) = (1/2)[(1− t)P0 + t P1] + (1/2)[(1− t)P1 + t P2].

We note that the point P 1
0 (t) = (1 − 2t) P0 + 2t P 1

0 (1/2) and the thus the point P 2
0 (t) =

(1− 2t) P 1
0 (1/2) + 2t P 2

0 (1/2). Therefore, since the point

X = (1/2)[(1/2)[(1− t) P0 + t P1] + (1/2)[(1− t)P1 + t P2],

we have that (1−t)2 P0+2t(1−t)P1+t2 P2 is equal to (1−2t)2 P 0
0 (1/2)+4t(1−2t)P 1

0 (1/2)+
(2t)2 P 2

0 (1/2).



12-8

Exercises

1. Construct an approximation of the curve defined by de Casteljau’s algorithm defined
the control points below.

���

��� ���

���

���

Figure 8: Apply Subdivision Method for de Casteljau’s algorithm

(a) by applying the subdivision method twice.

(b) by applying the subdivision method four times.

2. Complete the interactive exercises for the Subdivision Method.


