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  Abstract 
 
A one-dimensional monotone interpolation method based on interface reconstruction 
with partial volumes in the slope-space utilizing the Hermite cubic-spline, is proposed. 
The new method is only quartic, however is 𝐶𝐶2 and unconditionally monotone. A set 
of control points in addition to the data points is employed to constrain the curvature of 
the interpolation function and to eliminate possible nonphysical oscillations in the slope 
space. An extension of this method in two-dimensions is also discussed. 
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1. Introduction 

Existing monotone cubic interpolation methods [1] [2] [3] [4] are successful in solving 
many practical problems. However, they are 𝐶𝐶1 and not fit for certain applications that 
require a higher degree of smoothness.  For a 𝐶𝐶2 continuous monotone interpolation, a 
quintic polynomial is required [5] [6] [7], or some subdivision of intervals needs to be 
performed [8] [9] [10]. An issue with these methods is that the derivative of the interpola-
tion curve can have global oscillations and this limits their usage. There are methods exist-
ing for either monotone [11] [12] or with nonoscillation derivatives [13] [14]. In general, a 
monotone polynomial spline method requires certain constraints on their slope estimate to 
be satisfied. 
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Figure 1. A monotone interpolation of a strictly increasing data set {𝒙𝒙𝒊𝒊, 𝒔𝒔𝒊𝒊}.  

 
In this article, we propose an unconditionally monotone interpolation method that is only 
quartic, with the 𝐶𝐶2 continuity over the entire domain. The new method has no nonphys-
ical oscillation with its derivative and is 3𝑟𝑟𝑟𝑟 order accurate in space.  

 
 

 

 

 

 

 

 

 

 
Figure 2. Oscillation in the slope-space of a monotone interpolation. Although the slope of 
the spline function (red curve) is positive and matches the given areas in each interval de-
fined by the black polylines, thus, exactly passes each data point. Such a monotone interpo-
lation is unfit in certain applications like rebinning a data set of radiation energy counts. 
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2. The Solution Procedure 

2.1. Description of the problem 

A set of points {𝑥𝑥𝑖𝑖 , 𝑠𝑠𝑖𝑖} are specified for 𝑖𝑖 = 0, 1, 2, …𝑁𝑁 with {𝑥𝑥𝑖𝑖} ordered increasingly 
as well as {𝑠𝑠𝑖𝑖}, i.e. 𝑥𝑥𝑖𝑖 < 𝑥𝑥𝑖𝑖+1 and 𝑠𝑠𝑖𝑖 < 𝑠𝑠𝑖𝑖+1 hold for each integer 𝑖𝑖 in range, as shown 
in figure (1). Here 𝑁𝑁 is the number of intervals defined by the (𝑁𝑁 + 1) given points. 
 
The problem is to construct an explicit polynomial curve 𝑔𝑔(𝑥𝑥) that passes all the given 
data points, i.e., 𝑔𝑔(𝑥𝑥𝑖𝑖) = 𝑠𝑠𝑖𝑖, for 0 ≤ 𝑖𝑖 ≤ 𝑁𝑁, and has a continuous second derivative. In 
addition the curve must be strictly increasing (being monotonic 𝑔𝑔′(𝑥𝑥) > 0). Furthermore, 
the derivative of the interpolation function, 𝑔𝑔′(𝑥𝑥) should have no unnecessary oscilla-
tions. Figure (2) demonstrates the oscillation in the derivative space of a monotone inter-
polation obtained with a simple Hermite-interpolation method applied to a radioactive par-
ticle energy distribution problem. 

2.2. Reduction of the problem 

We consider a reduced problem in the slope space of the original problem. Let the slope 
function 𝑓𝑓(𝑥𝑥) ≡ 𝑔𝑔′(𝑥𝑥), then if 𝑓𝑓(𝑥𝑥) satisfy that 
 

                                    𝑓𝑓(𝑥𝑥) > 0,                         (1)                                    

∫ 𝑓𝑓(𝑥̅𝑥)𝑑𝑑𝑥̅𝑥𝑥𝑥𝑖𝑖+1
𝑥𝑥𝑖𝑖

= Δ𝑠𝑠𝑖𝑖 ≡ 𝑠𝑠𝑖𝑖+1 − 𝑠𝑠𝑖𝑖 ,                    (2) 

and 𝑓𝑓(𝑥𝑥) has a continuous first derivative (being 𝐶𝐶1). Then, we can see that the integral 
of 𝑓𝑓(𝑥𝑥)  

                       𝑔𝑔(𝑥𝑥) = 𝑠𝑠0 + ∫ 𝑓𝑓(𝑥̅𝑥)𝑑𝑑𝑥̅𝑥𝑥𝑥
0                   (3) 

not only passes through all the data points, but also has a well-defined second derivative. 
Therefore we pursue the solution of the reduced problem by finding certain 𝑓𝑓(𝑥𝑥) that 
satisfy the above given constraints.  

The domain [𝑥𝑥0, 𝑥𝑥𝑁𝑁] is divided to 𝑁𝑁 intervals with the boundary of interval 𝑖𝑖 defined 
by [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1]. The area Δ𝑠𝑠𝑖𝑖 is bounded by two lines: 𝑦𝑦 = ℎ𝑖𝑖 ,𝑦𝑦 = 0, and the boundaries 
of interval 𝑖𝑖, here  

                     ℎ𝑖𝑖 ≡ Δ𝑠𝑠𝑖𝑖/Δ𝑥𝑥𝑖𝑖                             (4) 

where Δ𝑥𝑥𝑖𝑖 ≡ 𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖. A solution of the problem must satisfy equations (1), (2), and (3), 
and without unnecessary oscillation.  

The above description corresponds to certain statistics problems such as re-binning of a 
radioactive particle energy distribution (see figure (3) on the next page), with the 𝑥𝑥-axis 
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being the energy and 𝑦𝑦-axis being the count of particles in each energy bin. A require-
ment for energy re-binning is that the curve 𝑓𝑓(𝑥𝑥) has to be smooth for differentiation, i.e. 
𝑔𝑔(𝑥𝑥) is 𝐶𝐶2. Not only that, the solution needs to have no oscillation for a minimal slope 
variation. Therefore, as the solution is mapped to a different bin-structure, it still makes 
physical sense.   

There can be an infinite number of candidates of the solution. To limit the choices we con-
sider a Hermite cubic-spline between an arbitrarily given pair of data points (𝑥𝑥𝐿𝐿,𝑦𝑦𝐿𝐿) and 
(𝑥𝑥𝑅𝑅 ,𝑦𝑦𝑅𝑅) (here 𝐿𝐿 and 𝑅𝑅 stand for the 'left' and 'right' boundaries of an interval) such that 

  𝑥𝑥(𝑢𝑢) = 𝑥𝑥𝐿𝐿𝐻𝐻00(𝑢𝑢) + 𝑥𝑥𝑅𝑅𝐻𝐻01(𝑢𝑢) + 𝑝𝑝𝐿𝐿𝐻𝐻10(𝑢𝑢) + 𝑝𝑝𝑅𝑅𝐻𝐻11(𝑢𝑢), 

                        𝑦𝑦(𝑢𝑢) = 𝑦𝑦𝐿𝐿𝐻𝐻00(𝑢𝑢) + 𝑦𝑦𝑅𝑅𝐻𝐻01(𝑢𝑢) + 𝑞𝑞𝐿𝐿𝐻𝐻10(𝑢𝑢) + 𝑞𝑞𝑅𝑅𝐻𝐻11(𝑢𝑢)               (5) 

where 0 ≤ 𝑢𝑢 ≤ 1 is a non-dimensional parameter. 𝑝𝑝𝐿𝐿,𝑝𝑝𝑅𝑅 are the estimates of (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑), 
𝑞𝑞𝐿𝐿,𝑞𝑞𝑅𝑅 are the estimates of (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) on the left and the right ends of a given interval. 𝐻𝐻𝑖𝑖𝑖𝑖(𝑢𝑢) 
are the Hermit cubic spline base functions that 

          𝐻𝐻00(𝑢𝑢) = 1 + 𝑢𝑢2(2𝑢𝑢 − 3),     𝐻𝐻01(𝑢𝑢) = 𝑢𝑢2(3 − 2𝑢𝑢), 

𝐻𝐻10(𝑢𝑢) = 𝑢𝑢(𝑢𝑢 − 1)2,         𝐻𝐻11(𝑢𝑢) = 𝑢𝑢2(𝑢𝑢 − 1).       (6) 

Next, we will show that how 𝑓𝑓(𝑥𝑥) can be constructed with the above Hermite spline to 
satisfy equations (1), (2), and (3), by properly choosing a set of control points.  

 

Figure 3. A good monotone interpolation 𝑔𝑔(𝑥𝑥) should have no nonphysical oscillations 
in its slope space (𝑓𝑓(𝑥𝑥), 𝑥𝑥) besides matching the given areas under the black polylines 
bounded inside each interval exactly. The green curve is such a positive function 𝑓𝑓(𝑥𝑥) that 
satisfies the said constraints, obtained with the proposed interpolation method.  
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 Figure 4. A quadratic fitting in the local coordinate system (ξ,η) in [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1]. The two 
end slopes and the area under 𝑦𝑦 = ℎ𝑖𝑖 are exactly matched. The blue dots on the ends are 
to be repositioned by finding the intersection between the interval wall 𝑥𝑥 = 𝑥𝑥𝑖𝑖 and a Her-
mite spline passing the current yellow control points. The yellow control points in the mid-
dle are to be lifted/lowered later with another round of area-matching. 

2.3. Area-matching for selecting control points on interval-walls  
The slope of 𝑓𝑓(𝑥𝑥), 𝑓𝑓′(𝑥𝑥) ≡ 𝑔𝑔′′(𝑥𝑥) at each inner data point can be estimated numerically. 
For example, using a quadratic interpolation on the three points (𝑥𝑥𝑖𝑖−1 , 𝑠𝑠𝑖𝑖−1), (𝑥𝑥𝑖𝑖 , 𝑠𝑠𝑖𝑖), 
and (𝑥𝑥𝑖𝑖+1, 𝑠𝑠𝑖𝑖+1), one is able to obtain an estimate of 𝑓𝑓′(𝑥𝑥𝑖𝑖), except at the left and right 
boundaries. We consider the reduced problem as an interface reconstruction problem for 
volume conservation. The approach is to construct the geometry of the interface contained 
in interval 𝑖𝑖 and to match the volume (area) Δ𝑠𝑠𝑖𝑖  for each 𝑖𝑖. The interface piece con-
structed in interval 𝑖𝑖 in general does not match with the pieces constructed in its neighbor 
intervals. We will apply a Hermit spline later to eliminate the gaps and ensure a global slope 
continuation of 𝑓𝑓(𝑥𝑥). 
 
To start with, we consider a given internal interval [𝑥𝑥𝐿𝐿, 𝑥𝑥𝑅𝑅]. The average of 𝑓𝑓(𝑥𝑥) in this 
interval, ℎ is defined in equation (4), we temporarily drop the subscript without loss of 
generality and let the width of the interval be Δ ≡ xR − 𝑥𝑥𝐿𝐿. We build a local Cartesian co-
ordinate system (𝜉𝜉, 𝜂𝜂) with its origin at (𝑥𝑥𝐿𝐿 + Δ

2
,ℎ), and let a quadratic curve represent 

the interface, such that  
 

𝜂𝜂 = 𝑎𝑎𝜉𝜉2 + 𝑏𝑏 𝜉𝜉 + 𝑐𝑐. 

For slope match at the left end 𝜉𝜉 =  −Δ
2
  and the right end 𝜉𝜉 =  + Δ

2
, we have  

 
−𝑎𝑎 Δ + 𝑏𝑏 = 𝑓𝑓𝐿𝐿′,  𝑎𝑎 Δ + 𝑏𝑏 = 𝑓𝑓𝑅𝑅′ . 
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The area matching means the integral of 𝜂𝜂 over the interval is 0, or 
 

𝑎𝑎
12

Δ3 + 𝑐𝑐 Δ = 0. 

Solving for 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐, one arrives at 

 

𝑎𝑎 =
𝑓𝑓𝑅𝑅′ − 𝑓𝑓𝐿𝐿′

2Δ ,      𝑏𝑏 =
𝑓𝑓𝑅𝑅′ + 𝑓𝑓𝐿𝐿′

2  , 𝑐𝑐 =
Δ

24
(𝑓𝑓𝐿𝐿′ − 𝑓𝑓𝑅𝑅′). 

                                    (7)         

The constant term 𝑐𝑐 carries the position of the interface at the middle of the interval to the 
3𝑟𝑟𝑟𝑟 order accuracy (for our fitting here is quadratic). 

We will use these mid interval interface positions obtained from the above quadratic fitting 
as a set of control points to construct our first approximation of the solution. Each interval 
wall 𝑥𝑥 = 𝑥𝑥𝑖𝑖 intersects the Hermit spline curve passing the set of the mid-interval control 
points and the intersection is taken as a fixed control point. Together, we have (2𝑁𝑁 + 1) 
control points 𝐶𝐶𝑘𝑘, (𝑘𝑘 = 0, 1, 2, … 2𝑁𝑁 − 1). The (𝑁𝑁 + 1) of them with even subscripts are 
on the walls of the intervals and are fixed, the rest 𝑁𝑁 of them above the middle points of 
intervals are to be shifted vertically by matching volumes again.   

2.4. Area-matching for selecting mid interval control points 
We are to construct a Hermit spline that passes all the control points. For an exact area 
match, we break each original interval into two subintervals about the control point in the 
middle of the interval, see figure (5). With the two neighbor mid interval points, there are 
three mid interval control points involved in the area-matching. We compute the heights of 
the mid interval control points by solving a tri-linear linear system. 
 
In figure (6), the shadowed area 𝐴𝐴𝐻𝐻 under a Hermite cubic spline in the interval [𝑥𝑥𝐿𝐿, 𝑥𝑥𝑅𝑅] 
can be calculated with   

              𝐴𝐴𝐻𝐻 =  ∫ 𝑦𝑦(𝑢𝑢)𝑥𝑥′(𝑢𝑢) 𝑑𝑑𝑑𝑑.1
0                        (8) 

Let the control point immediately left to 𝑥𝑥 = 𝑥𝑥𝐿𝐿 be 𝐿𝐿𝐿𝐿 = (𝑥𝑥𝐿𝐿𝐿𝐿,𝑦𝑦𝐿𝐿𝐿𝐿), and the one immedi-
ately right to 𝑥𝑥 = 𝑥𝑥𝑅𝑅 be 𝑅𝑅𝑅𝑅 = (𝑥𝑥𝑅𝑅𝑅𝑅,𝑦𝑦𝑅𝑅𝑅𝑅). Evaluation of the above area integral provides 
that 

𝐴𝐴𝐻𝐻 = 𝜎𝜎00𝑦𝑦𝐿𝐿 + 𝜎𝜎01𝑦𝑦𝑅𝑅 + 1
2

(𝜎𝜎10(𝑦𝑦𝑅𝑅 − 𝑦𝑦𝐿𝐿𝐿𝐿) + 𝜎𝜎11(𝑦𝑦𝑅𝑅𝑅𝑅 − 𝑦𝑦𝐿𝐿)),     (9) 

where  𝜎𝜎00 = 𝑥𝑥𝐿𝐿𝐼𝐼0000 + 𝑥𝑥𝑅𝑅𝐼𝐼0001 + 𝑝𝑝𝐿𝐿𝐼𝐼0010 + 𝑝𝑝𝑅𝑅𝐼𝐼0011, 

𝜎𝜎01 = 𝑥𝑥𝐿𝐿𝐼𝐼0100 + 𝑥𝑥𝑅𝑅𝐼𝐼0101 + 𝑝𝑝𝐿𝐿𝐼𝐼0110 + 𝑝𝑝𝑅𝑅𝐼𝐼0111, 

𝜎𝜎10 = 𝑥𝑥𝐿𝐿𝐼𝐼1000 + 𝑥𝑥𝑅𝑅𝐼𝐼1001 + 𝑝𝑝𝐿𝐿𝐼𝐼1010 + 𝑝𝑝𝑅𝑅𝐼𝐼1011, 

     𝜎𝜎11 = 𝑥𝑥𝐿𝐿𝐼𝐼1100 + 𝑥𝑥𝑅𝑅𝐼𝐼1101 + 𝑝𝑝𝐿𝐿𝐼𝐼1110 + 𝑝𝑝𝑅𝑅𝐼𝐼1111.             (10) 
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Figure 5. The yellow dots at the middle of each interval on their quadratic area fitting curves 
(green curves) are to be lifted or lowered. The blue control points are the intersection be-
tween the interval walls and a cubic spline (red curve) passing the yellow control points. 
The interval [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1] is broken to two subintervals for another round of area-matching. 
 
 
 

 

 

 

 

 

 

 

 
 

 
 Figure 6. The area under a Hermit spline curve defined in a general interior interval 
[𝑥𝑥𝐿𝐿, 𝑥𝑥𝑅𝑅]. To compute the area bounded for the original interval, two areas from the two 
subintervals are to be added together. In another word, each of the intervals[𝑥𝑥𝐿𝐿𝐿𝐿, 𝑥𝑥𝐿𝐿],
[𝑥𝑥𝐿𝐿, 𝑥𝑥𝑅𝑅], and [𝑥𝑥𝑅𝑅 , 𝑥𝑥𝑅𝑅𝑅𝑅] in this figure should be considered as a subinterval. 
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Our choices of the 𝑥𝑥-slope terms are 

          𝑝𝑝𝐿𝐿 = 1
2

(𝑥𝑥𝑅𝑅 − 𝑥𝑥𝐿𝐿𝐿𝐿),    𝑝𝑝𝑅𝑅 = 1
2

(𝑥𝑥𝑅𝑅𝑅𝑅 − 𝑥𝑥𝐿𝐿), 

and the 𝑦𝑦-slope terms are  

𝑞𝑞𝐿𝐿 = 1
2

(𝑦𝑦𝑅𝑅 − 𝑦𝑦𝐿𝐿𝐿𝐿),    𝑞𝑞𝑅𝑅 = 1
2

(𝑦𝑦𝑅𝑅𝑅𝑅 − 𝑦𝑦).         (11) 

They have been explicitly substituted in equation (9) the expression of the physical area. 
The 𝜎𝜎𝑖𝑖𝑖𝑖 terms depend only on the 𝑥𝑥-coordinates of the boundaries of an interval. The 
terms 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 are area integrals of the Hermit spline defined as 

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∫ 𝐻𝐻𝑖𝑖𝑖𝑖(𝑢𝑢)𝐻𝐻𝑘𝑘𝑘𝑘′ (𝑢𝑢)𝑑𝑑𝑑𝑑1
0                (12) 

Each of 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 takes the values 0 or 1. These integrals are evaluated as the following 

𝐼𝐼0000 = −
1
2

, 𝐼𝐼0010 =
1

10
,  𝐼𝐼0001 =

1
2

,    𝐼𝐼0011 =  −
1

10
, 

         𝐼𝐼1000 =  − 1
10

,   𝐼𝐼1010 = 0,      𝐼𝐼1001 = 1
10

,    𝐼𝐼1011 =  − 1
60

, 

           𝐼𝐼0100 =  −1
2

,    𝐼𝐼0110 =  − 1
10

,   𝐼𝐼0101 = 1
2

,     𝐼𝐼0111 = 1
10

, 

           𝐼𝐼1100 = 1
10

,     𝐼𝐼1110 = 1
60

,     𝐼𝐼1101 =  − 1
10

,  𝐼𝐼1111 = 0. 

Now let us consider the 𝑖𝑖𝑡𝑡ℎ interval, with which 3 control points are involved, see in 

figure (7). They are 𝐶𝐶2𝑖𝑖 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖), 𝐶𝐶2𝑖𝑖+1 = �𝑥𝑥𝑖𝑖+12
,𝑦𝑦𝑖𝑖+12

�, and 𝐶𝐶2(𝑖𝑖+1) = (𝑥𝑥𝑖𝑖+1,𝑦𝑦𝑖𝑖+1) 

with 𝑥𝑥𝑖𝑖+12
≡ 1

2
(𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑖𝑖+1), and 𝑦𝑦𝑖𝑖+1/2 to be determined. For area matching we need to 

enforce that the sum of the area contribution from the left subinterval and the right subin-
terval to equal an known value that 

𝐴𝐴𝐻𝐻
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐴𝐴𝐻𝐻

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = ℎ𝑖𝑖Δ𝑥𝑥𝑖𝑖 ≡ 𝑠𝑠𝑖𝑖+1 − 𝑠𝑠𝑖𝑖 .        (13) 

Utilizing equation (9) one arrives at 
 

𝐴𝐴𝐻𝐻
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜎𝜎00

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝑖𝑖 + 𝜎𝜎01
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑦𝑦𝑖𝑖+12

+ 1
2

(𝜎𝜎10
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝑦𝑦𝑖𝑖+12

− 𝑦𝑦𝑖𝑖−12
 � +  𝜎𝜎11

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖)),   

𝐴𝐴𝐻𝐻
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 =  𝜎𝜎00

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝑦𝑦𝑖𝑖+12
+ 𝜎𝜎01

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝑦𝑦𝑖𝑖+1 + 1
2
�𝜎𝜎10

𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡(𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖) + 𝜎𝜎11
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 �𝑦𝑦𝑖𝑖+32

− 𝑦𝑦𝑖𝑖+12
��.  

Because each of the 𝜎𝜎𝑖𝑖𝑖𝑖 terms involves only the 𝑥𝑥-coordinates of the control points, it is 
a constant. The sum of areas under each Hermit cubit splines defined on a subinterval is 
simply a linear combination of 𝑦𝑦𝑖𝑖−12

, 𝑦𝑦𝑖𝑖+1/2, and 𝑦𝑦𝑖𝑖+32
. Therefore, we have a tri-diagonal 

linear system involving all intervals to solve in order to match the area exactly in each 
interval, with certain boundary conditions provided for the left-most and the right-most 
intervals. 
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 Figure 7. The area under the Hermit spline curves on interval 𝑖𝑖 is the sum of two half-
interval areas define with equation (13). Each area matching involves three mid interval 
control points (yellow). The solution of a tri-diagonal linear system determines their heights. 

2.5. Boundary conditions 
For the interval on the left boundary, we must specify the slope terms 𝑝𝑝𝐿𝐿,𝑞𝑞𝐿𝐿. For the inter-
val on the right boundary, we must provide the slope terms 𝑝𝑝𝑅𝑅 ,𝑞𝑞𝑅𝑅 as well. Currently we 
assume two kinds of boundary conditions. The first is a symmetrical boundary condition 
with which one sets a ghost control points at the reflection point of the nearest inner control 
point. The other one is a counter-symmetric condition by setting a ghost control point out 
of the boundary by extending the line-segment defined by the two nearest known control 
points involved (see figure (8)). These ghost points provide closure of the solution of the 
tri-diagonal linear system mentioned in the last subsection. 

 

 

 

 

 

 

 
 
 
 
Figure 8. A demonstration of the symmetric (the right side) and the counter-symmetric (the 
left side) boundary conditions. A ghost control point (pink) is employed in each case. 
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2.6. Positivity in the slope-space 
We have obtained 𝑓𝑓(𝑥𝑥) with a Hermite cubic spline on the control points computed in the 
last section. This solution may not necessarily be positive when ℎ𝑖𝑖 is close or equal to zero. 
Thus, we need to have a treatment in the possible case this negativity occurs. Fortunately, 
we have a nearly trivial treatment that is rather easy to perform, at least for isolated cases.  
 
Considering the worst case that Δ𝑠𝑠𝑖𝑖 = 0, in the (𝑔𝑔(𝑥𝑥), 𝑥𝑥) space this means 𝑔𝑔(𝑥𝑥) must 
be a constant. Equivalently, the slope 𝑓𝑓(𝑥𝑥) must be zero everywhere in interval 𝑖𝑖, other-
wise any variation would create some negative slopes then the monotone condition is vio-
lated. Specifically, the slopes at the two ends must be zero because any positive slope 
would cause the right end point to be higher than the left one.  

Thus, we choose to enforce the slope terms 𝑞𝑞𝐿𝐿,𝑞𝑞𝑅𝑅 to zeros in the Hermite cubic spline in 
case an interval contains a point with a negative 𝑓𝑓(𝑥𝑥). This means the two control points 
on interval boundaries are at the same height. Since we also assume a troubled interval is 
isolated, we lift the neighbor control points at (𝑥𝑥𝑖𝑖−12

,𝑦𝑦𝑖𝑖−12
) and (𝑥𝑥𝑖𝑖+32

,𝑦𝑦𝑖𝑖+32
) to match the 

areas in the two neighbor intervals. Because the area match condition is linear for a single 
variable 𝑦𝑦𝑖𝑖−12

 or 𝑦𝑦𝑖𝑖+3/2 in either neighbor interval so the solution is trivial and does not 

affect rest of the intervals. 

After the above treatment there will be no occurrence of 𝑓𝑓(𝑥𝑥) < 0 anymore. Therefore, 
the monotonicity of 𝑔𝑔(𝑥𝑥) is satisfied unconditionally, see figure (9). Not to mention that 
no unnecessary oscillations are introduced with this local treatment.    

 

Figure 9. With setting the end slopes to zeros (the green curve) and matching the area under 
the polylines again, the isolated slope-space negativity in a single interval (the red curve) is 
fixed. The locally modified spline still has a continuous derivative crossing the end points 
of the interval and does not affect the solution elsewhere.  
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     3. An Unconditional Monotone 𝑪𝑪𝟐𝟐 Spline 

3.1. Constructing the proposed method 
We have obtained a Hermite cubic spline in previous sections. The spline is non-negative, 
differentiable, and the area under it bounded by the walls of intervals and the 𝑥𝑥-axis exactly 
matches a specified area in every interval. Therefore, the integration of 𝑓𝑓(𝑥𝑥) provides a 
monotone interpolation of the data set {𝑥𝑥𝑖𝑖 , 𝑠𝑠𝑖𝑖}, 𝑖𝑖 = 0, 1, 2, …𝑁𝑁 with an excellent quality. 
We have picked a general parametric form of 𝑥𝑥 = 𝑥𝑥(𝑢𝑢) and 𝑦𝑦 = 𝑦𝑦(𝑢𝑢) in equation (5). In 
practice one can simply pick that 
 

𝑢𝑢 =
𝑥𝑥 − 𝑥𝑥𝑖𝑖
Δ𝑥𝑥𝑖𝑖

,         𝑓𝑓(𝑥𝑥) = 𝑦𝑦(𝑢𝑢), 

and all the previous discussions would still hold. This means we have an unconditionally 
monotone interpolation that is only quartic. It is an integral of the Hermit-cubic splines. Its 
order is lower than some of the existing monotone interpolation methods. Although we have 
split each interval to two, thus increased the number of control points. Nevertheless, since 
our analysis is done in the slope space for a cubic spline, the proposed method is easier to 
handle than other monotone interpolation methods. The new monotone interpolation can be 
explicitly expressed as the follows 

𝑔𝑔(𝑥𝑥) = 𝑠𝑠𝑖𝑖 + �𝑥𝑥𝑖𝑖+12
− 𝑥𝑥𝑖𝑖�� 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑

𝑢𝑢

0
= 

𝑠𝑠𝑖𝑖 + �𝑥𝑥𝑖𝑖+12
− 𝑥𝑥𝑖𝑖� �𝑦𝑦𝑖𝑖𝐺𝐺00(𝑢𝑢) + 𝑦𝑦𝑖𝑖+12

𝐺𝐺01(𝑢𝑢) + 𝑞𝑞𝑖𝑖𝐺𝐺10(𝑢𝑢) + 𝑞𝑞𝑖𝑖+12
𝐺𝐺11(𝑢𝑢)�,        (14) 

for the left subinterval of the original interval ′𝑖𝑖′ with 𝑢𝑢 ≡ (𝑥𝑥 − 𝑥𝑥𝑖𝑖)/(𝑥𝑥𝑖𝑖+12
− 𝑥𝑥𝑖𝑖). The 

quartic functions 𝐺𝐺𝑖𝑖𝑖𝑖(𝑢𝑢) are integration of the Hermite base functions 𝐻𝐻𝑖𝑖𝑖𝑖(𝑢𝑢) and 

 𝐺𝐺00(𝑢𝑢) = 𝑢𝑢 �1 − 𝑢𝑢2 −
𝑢𝑢3

2
� , 𝐺𝐺01(𝑢𝑢) = 𝑢𝑢3(1 −

𝑢𝑢
2

), 

𝐺𝐺10(𝑢𝑢) =
𝑢𝑢2

12
(3𝑢𝑢2 − 8𝑢𝑢 + 6), 𝐺𝐺11(𝑢𝑢) =

𝑢𝑢3

12
(3𝑢𝑢 − 4). 

Let us define that  

𝑠𝑠𝑖𝑖+1/2 = 𝑔𝑔(𝑥𝑥𝑖𝑖+12
) = 𝑠𝑠𝑖𝑖 +

1
2
�𝑥𝑥𝑖𝑖+12

− 𝑥𝑥𝑖𝑖� �𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑖𝑖+1 +
1
6
�𝑞𝑞𝑖𝑖 + 𝑞𝑞𝑖𝑖+12

��. 

Then for the right subinterval (𝑥𝑥𝑖𝑖+12
, 𝑥𝑥𝑖𝑖+1), we have 

𝑔𝑔(𝑥𝑥) =  𝑠𝑠𝑖𝑖+12
+ �𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖+12

�� 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑑𝑑
𝑢𝑢

0
= 

𝑠𝑠𝑖𝑖+1/2 + �𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖+1/2� �𝑦𝑦𝑖𝑖+1/2𝐺𝐺00(𝑢𝑢) + 𝑦𝑦𝑖𝑖+1𝐺𝐺01(𝑢𝑢) + 𝑞𝑞𝑖𝑖+1/2𝐺𝐺10(𝑢𝑢) + 𝑞𝑞𝑖𝑖+1𝐺𝐺11(𝑢𝑢)�(15) 
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with 𝑢𝑢 = (𝑥𝑥 − 𝑥𝑥𝑖𝑖+12
)/(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖+12

) this time. The slope terms are defined as 

𝑞𝑞𝑖𝑖 =
1
2
�𝑦𝑦𝑖𝑖+12

− 𝑦𝑦𝑖𝑖−12
� , 𝑞𝑞𝑖𝑖+1/2 =

1
2

(𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖), 𝑞𝑞𝑖𝑖+1 =
1
2
�𝑦𝑦𝑖𝑖+32

− 𝑦𝑦𝑖𝑖+12
�, 

if interval ′𝑖𝑖′ contains no negativeness. In the case of a possible isolated negativeness the 
corresponding 𝑞𝑞 terms are taken to zeros. Because the 𝑦𝑦 (thus 𝑞𝑞) terms in the above 
equations are obtained with area matching, equations (1), (2), and (3) are all satisfied. Be-
cause 𝑓𝑓(𝑥𝑥)  is differentiable, 𝑔𝑔(𝑥𝑥)  is an unconditionally monotone 𝐶𝐶2  quartic spline.  
Besides all the above, the proposed method does not have nonphysical oscillations on its 
derivative for we have explicit slope control with a Hermite cubic spline. This is a desirable 
feature. It is possible to further refine the solution by minimize the curvature (say) of 𝑓𝑓(𝑥𝑥) 
to adjust the level of the control points for minimal variation in slope. However, we are 
confident that the proposed solution is of third order accuracy with a quadratic interface 
reconstruction. Therefore, the control points are almost right on the ideal solution assuming 
which exists. Then, a further refinement is hardly necessary for a practical purpose. 

3.2. In two-dimensions 

Consider a set of data triplets �𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗 , 𝑠𝑠𝑖𝑖,𝑗𝑗�  given for 𝑖𝑖 = 1, 2, … , (𝐼𝐼 − 1), 𝐼𝐼  and 𝑗𝑗 =
1, 2, … , (𝐽𝐽 − 1), 𝐽𝐽  with the properties  𝑥𝑥𝑖𝑖+1 > 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗+1 > 𝑦𝑦𝑗𝑗 , and𝑠𝑠(𝑖𝑖+1),𝑗𝑗 > 𝑠𝑠𝑖𝑖,𝑗𝑗 , 𝑠𝑠𝑖𝑖,(𝑗𝑗+1) >
𝑠𝑠𝑖𝑖,𝑗𝑗 for an arbitrary pair of integers 𝑖𝑖, 𝑗𝑗 in the range. Can one construct a spatial 
polynomial surface 𝑆𝑆(𝑥𝑥,𝑦𝑦) that passes every data point (i.e. 𝑆𝑆�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� = 𝑠𝑠𝑖𝑖,𝑗𝑗 for all feasi-
ble integer pair (𝑖𝑖, 𝑗𝑗)), and has positive spatial derivatives  

𝑓𝑓(𝑥𝑥,𝑦𝑦) ≡
𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

> 0,𝑔𝑔(𝑥𝑥,𝑦𝑦) ≡
𝜕𝜕𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕𝜕𝜕

> 0 

and no oscillation with both 𝑓𝑓 and 𝑔𝑔?   

If the given dataset is also consistent with a sufficient condition for data monotonicity  

𝑣𝑣𝑖𝑖,𝑗𝑗 ≡ 𝑠𝑠𝑖𝑖+1,𝑗𝑗+1 + 𝑠𝑠𝑖𝑖,𝑗𝑗 − 𝑠𝑠𝑖𝑖,𝑗𝑗+1 − 𝑠𝑠𝑖𝑖+1,𝑗𝑗 > 0.      (16) 

for all valid 𝑖𝑖 and 𝑗𝑗, then, a method for interface-reconstruction in three-dimensions using 
volume conservation may be applied to constructing a two-dimensional monotone spline 
that is at least twice differentiable, with no oscillation on the first derivatives of 𝑆𝑆(𝑥𝑥,𝑦𝑦). 

Without loss of generality, we assume 𝑠𝑠𝑖𝑖,𝑗𝑗 > 0 and modify a given data set satisfying equa-
tion (16), by adding a layer of phantom data points by simply choosing 𝑥𝑥0 < 𝑥𝑥1, 𝑦𝑦0 < 𝑦𝑦1, 
and assigning 𝑠𝑠𝑖𝑖,0 = 0, 𝑠𝑠0,𝑗𝑗 = 0 for all 0 ≤ 𝑖𝑖 ≤ 𝐼𝐼, 0 ≤ 𝑗𝑗 ≤ 𝐽𝐽. The monotone feature that 
𝑠𝑠(𝑖𝑖+1),𝑗𝑗 > 𝑠𝑠𝑖𝑖,𝑗𝑗 , 𝑠𝑠𝑖𝑖,(𝑗𝑗+1) > 𝑠𝑠𝑖𝑖,𝑗𝑗 can be derived from equation (16) using the boundary values. 

The interface reconstruction is done in the (𝜕𝜕2𝑠𝑠/𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕) space. The ‘fluid volume’ con-
fined in each rectangular cell 𝑥𝑥𝑖𝑖 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖+1,  𝑦𝑦𝑗𝑗 ≤ 𝑦𝑦 ≤ 𝑦𝑦𝑗𝑗+1, is defined by equation (16), 
which is a difference expression for the cross-derivative at the cell center. Because slope 
estimates can be computed with certain difference schemes, there are enough data to support 
the definition of a local quadratic polynomial (or some other algebraic expression) that 
bounds 𝑣𝑣𝑖𝑖,𝑗𝑗 exactly in this cell. 
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Figure 10. The top view of an internal cell (solid line) and its neighbors (dashed lines) are 
shown above. The blue control points are computed from local interface reconstruction and 
are fixed. The yellow control point at the center of each cell is going to be shifted in the 
direction perpendicular to the page to match volumes defined by equation (16) by solving a 
linear system in order to construct a bicubic spline 𝑉𝑉(𝑥𝑥,𝑦𝑦) = (𝜕𝜕2𝑆𝑆/𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦). 

The geometrical average of the intersections between the straight line 𝑥𝑥 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦 = 𝑦𝑦𝑖𝑖 and 
the reconstructed local interface expressions in the surrounding cells can be used as fixed 
control points. The control points above the middle point of each edge of a given cell can 
be set similarly (see figure (10)). A bicubic spline polynomial can be defined over all the 
control points and an exact volume match for all the cells can be performed to determine 
the heights of the control points at the center of cells. Solution of a sparse linear system is 
required because a volume integral under such a bicubic spline is a linear combination of 
the heights of neighbor control points above cell centers. 

Finally, the monotone spline can be obtained with an integral of the bicubic spline 𝑉𝑉(𝑥𝑥,𝑦𝑦) 
described above 

𝑆𝑆(𝑥𝑥,𝑦𝑦) = � � 𝑉𝑉(𝑥̅𝑥,𝑦𝑦�)𝑑𝑑𝑥̅𝑥𝑑𝑑𝑦𝑦�
𝑦𝑦

𝑦𝑦0

𝑥𝑥

𝑥𝑥0
. 

Because 𝑉𝑉 = (𝜕𝜕2𝑆𝑆/𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕) > 0 holds everywhere by assumption and on the boundaries 
𝑥𝑥 = 𝑥𝑥0  and 𝑦𝑦 = 𝑦𝑦0  the first derivatives of 𝑆𝑆 are nonnegative, as the spatial integrals 
of (𝜕𝜕2𝑆𝑆/𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕), 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 > 0 and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 > 0 must hold everywhere inside the computa-
tional domain. Thus the spline is monotone. Because explicit slope control is provided for 
𝑉𝑉(𝑥𝑥,𝑦𝑦) with setting the control points by volume conservation, there is no oscillation on 
the derivatives of 𝑆𝑆(𝑥𝑥,𝑦𝑦) for (𝜕𝜕2𝑆𝑆/𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕) has no oscillation. In addition, the spatial 
slopes is continuous for a bicubic polynomial 𝑉𝑉(𝑥𝑥,𝑦𝑦) ≡ (𝜕𝜕2𝑆𝑆/𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕), 𝑆𝑆(𝑥𝑥,𝑦𝑦) is then at 
least twice differentiable.     
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Figure 11. The statistical counts of certain radio-active events are binned. The x-axis is 
energy density and the y-axis stands for the average event count per energy unit. This plot 
has the same interpretation as shown in figure (2). 

4. An Application: Arbitrary Rebinning of Statistical Data 
A set of statistical data pair {𝑥𝑥𝑖𝑖 , 𝑠𝑠𝑖𝑖}, (𝑖𝑖 = 0, 1, 2, … ,𝑁𝑁 − 1,𝑁𝑁) is given (which can be con-
sidered as density of radioactive particle counts vs. energy, as shown in figure (11). It is 
desired to bin the data in such a way that the number of counts is even in each bin. We are 
going to demonstrate how solve this problem with constructing the proposed monotone in-
terpolation. 

4.1. Slope estimate 
At each internal knot 𝑥𝑥𝑖𝑖, we find its neighbor knots 𝑥𝑥𝑖𝑖−1 and 𝑥𝑥𝑖𝑖+1 and fit a quadratic 
polynomial 

𝑆𝑆(𝑥𝑥) = 𝛼𝛼𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑖𝑖)2 + 𝛽𝛽𝑖𝑖(𝑥𝑥 − 𝑥𝑥𝑖𝑖) + 𝛾𝛾𝑖𝑖 

that passes the three data points and the solution is explicit that 

 

𝛼𝛼𝑖𝑖 =
ℎ𝑖𝑖 − ℎ𝑖𝑖−1
𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖−1

, 𝛽𝛽𝑖𝑖 = (ℎ𝑖𝑖 ∗ Δ𝑥𝑥𝑖𝑖−1 + ℎ𝑖𝑖−1 ∗ Δ𝑥𝑥𝑖𝑖), 𝛾𝛾𝑖𝑖 = 𝑠𝑠𝑖𝑖 . 

For an estimate of slopes we can differentiate 𝑆𝑆(𝑥𝑥) and take 

𝑓𝑓(𝑥𝑥𝑖𝑖) ≈ 𝑆𝑆′(𝑥𝑥𝑖𝑖) = 𝛽𝛽𝑖𝑖 ,   𝑓𝑓′(𝑥𝑥𝑖𝑖) ≈ 𝑆𝑆′′(𝑥𝑥𝑖𝑖) = 2𝛼𝛼𝑖𝑖 . 
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4.2. A quadratic area-matching to locate control points above knots 
For each interval [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1], we fit a quadratic polynomial 

𝐹𝐹(𝑥𝑥) = 𝑎𝑎 �𝑥𝑥 − 𝑥𝑥𝑖𝑖+12
�
2

+ 𝑏𝑏 �𝑥𝑥 − 𝑥𝑥𝑖𝑖+12
� + (𝑐𝑐 − ℎ𝑖𝑖) 

with 𝐹𝐹′(𝑥𝑥𝑖𝑖) = 2𝛼𝛼𝑖𝑖 ,𝐹𝐹′(𝑥𝑥𝑖𝑖+1) = 2𝛼𝛼𝑖𝑖+1 the slope estimates described above. One finds that 

𝑎𝑎 = (𝑆𝑆′′(𝑥𝑥𝑖𝑖+1) − 𝑆𝑆′′(𝑥𝑥𝑖𝑖))/(2Δ𝑥𝑥𝑖𝑖), 𝑏𝑏 = (𝑆𝑆′′(𝑥𝑥𝑖𝑖) + 𝑆𝑆′′(𝑥𝑥𝑖𝑖+1))/2, 𝑐𝑐 = 𝑎𝑎
(Δ𝑥𝑥𝑖𝑖)2

12
. 

The value of 𝑐𝑐 = 𝐹𝐹(𝑥𝑥𝑖𝑖+12
)  is the estimate of the height of the mid interval control 

point 𝐶𝐶2𝑖𝑖+1. The quadratic area fitting function 𝐹𝐹(𝑥𝑥) described above has the 3𝑟𝑟𝑟𝑟 order 
spatial accuracy and provides the initial heights of the mid interval control points.  

4.3. Apply a Hermit spline to determine control points above knots 

A Hermit cubic spline passing the set of mid interval area matching points obtained above 
intersects the line 𝑥𝑥 = 𝑥𝑥𝑖𝑖 and the intersection is taken as the position of control point 𝐶𝐶2𝑖𝑖. 
In the unlikely case that this control point is below the 𝑥𝑥-axis, for positivity, we would lift 
it to (𝑥𝑥𝑖𝑖 , 0) thus move this control-point closer to the true solution which is by definition 
above the 𝑥𝑥-axis. These control points are not to be moved. 

4.4. Adjust mid-interval control points with a Hermit spline area-match 

At this step, each interval is broken to two subintervals. Each interval [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1] corre-
sponds to a mid-interval control point 𝐶𝐶2𝑖𝑖+1 = (𝑥𝑥𝑖𝑖+12, 𝑦𝑦𝑖𝑖+12

). 𝑦𝑦𝑖𝑖+12
 is computed by solving 

a tri-diagonal linear system defined by the area-matching equation (13) for all 𝑖𝑖’s.  

4.5. Constructing the proposed monotone spline  

All the control points are now determined. They define a unique Hermit spline curve 𝑓𝑓(𝑥𝑥) 
that passes all the control points, has a continuous derivative crossing the bin-walls, and 
matches the counts in each bin. We are able to integrate 𝑓𝑓(𝑥𝑥) to construct the monotone 
interpolation function 𝑔𝑔(𝑥𝑥) as described with equation (14), equation (15).  

4.6. Solving for evenly dividing counts in each new bins 

Because 𝑔𝑔(𝑥𝑥) is monotone, one is able to evenly divide the vertical axis in the (𝑔𝑔(𝑥𝑥), 𝑥𝑥) 
space between (𝑔𝑔(𝑥𝑥0),𝑔𝑔(𝑥𝑥𝑁𝑁)) to 𝑀𝑀 intervals. Let the new accumulated bin counts be  

𝑆𝑆𝑗𝑗 = 𝑠𝑠0 +
𝑗𝑗(𝑠𝑠𝑁𝑁 − 𝑠𝑠0)

𝑀𝑀
, (𝑗𝑗 = 0, 1, 2, …𝑀𝑀). 

Then one solves for each 𝑗𝑗 that 𝑔𝑔�𝑥𝑥𝑗𝑗� = 𝑆𝑆𝑗𝑗 for the new bin-system. Because the deriva-
tive 𝑔𝑔′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) is available at any 𝑥𝑥 in the domain, a Newton-Raphson method 
 

𝑥𝑥𝑗𝑗𝑘𝑘+1 = 𝑥𝑥𝑗𝑗𝑘𝑘 − 𝑔𝑔(𝑥𝑥𝑘𝑘)/𝑓𝑓(𝑥𝑥𝑘𝑘) 
 

will generate the solution quickly. The first guess can be picked with a search to find the 
𝑖𝑖𝑡𝑡ℎ bin that contains the solution, i.e. 𝑠𝑠𝑖𝑖 < 𝑆𝑆𝑗𝑗 < 𝑠𝑠𝑖𝑖+1 then, simply taken to 𝑥𝑥𝑗𝑗0 = 𝑥𝑥𝑖𝑖+12

. 
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Figure 12. The statistical counts in figure (11) are rebinned with the proposed monotone 
𝐶𝐶2non-oscillation quartic interpolation. The black curve is the slope function 𝑓𝑓(𝑥𝑥). The red 
bin structure is the original and the green bin structure is for even bin counts in each bin. 
 
A solution in the case of 𝑁𝑁 = 28 and 𝑀𝑀 = 40 is shown in figure (12). One should easily 
understand the feature of no oscillation with 𝑓𝑓(𝑥𝑥) is necessary for a sensible solution of 
rebinning the statistical data. 
 

5. Conclusion 

A one dimensional monotone 𝐶𝐶2quartic interpolation method is proposed. The problem is 
reduced to an area matching problem in the slope space to locate a set of control points on 
the solution curve. A quadratic fitting is employed to first approximately locate control 
points with area matching. Then the solution of a tri-diagonal linear system is used to relo-
cate the control points in the middle of each interval to exactly matching the areas under a 
Hermit-cubic spline curve while fixing the control points above the knots. The integration 
of the solution in the slope-space provides the desired unconditional monotone 𝐶𝐶2 inter-
polation. The proposed method has the feature of being of lower order (quartic) and with 
no undesired oscillation in the slope space. An application to the practical problem of re-
binning a set of nonnegative statistical data shows the proposed method is effective in one-
dimension. It may be extended to two-dimensions in a similar fashion for data sets that 
satisfy an extra constraint. 
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