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 The Annals of Statistics
 1985, Vol. 13, No. 4, 1378-1402

 A COMPARISON OF GCV AND GML FOR CHOOSING THE
 SMOOTHING PARAMETER IN THE GENERALIZED SPLINE

 SMOOTHING PROBLEM1

 BY GRACE WAHBA

 University of Wisconsin

 The partially improper prior behind the smoothing spline model is used
 to obtain a generalization of the maximum likelihood (GML) estimate for the

 smoothing parameter. Then this estimate is compared with the generalized
 cross validation (GCV) estimate both analytically and by Monte Carlo meth-
 ods. The comparison is based on a predictive mean square error criteria. It is
 shown that if the true, unknown function being estimated is smooth in a sense

 to be defined then the GML estimate undersmooths relative to the GCV

 estimate and the predictive mean square error using the GML estimate goes
 to zero at a slower rate than the mean square error using the GCV estimate. If

 the true function is "rough" then the GCV and GML estimates have asymp-
 totically similar behavior. A Monte Carlo experiment was designed to see if

 the the asymptotic results in the smooth case were evident in small sample
 sizes. Mixed results were obtained for n = 32, GCV was somewhat better than

 GML for n = 64, and GCV was decidedly superior for n = 128. In the n = 32
 case GCV was better for smaller o2 and the comparison close for larger a
 The theoretical results are shown to extend to the generalized spline smooth-
 ing model, which includes the estimate of functions given noisy values of
 various integrals of them.

 1. Introduction. We consider the same smoothing spline procedures as in
 Wahba (1978b, 1983) and elsewhere, and their extension to the solution of linear
 operator equations with noisy data. The (special) spline smoothing model is

 Yi=f(ti) +ei, i = 1,2,..., n, ti e [0,1],
 where E = (el, ... ) X(0, a2I n), U2 is unknown, and f(.) is some function
 in the Sobolev space W2m[0, 1],

 W27 m[01]{ff f f ',... f (m-l) abs. cont., f (m)l e 2[0 1])

 The smoothing spline estimate f, x of f is the minimizer in W2m[0, 1] of
 in

 (1.1) n E ( f(t)- yL)2 + x f( f (m)(t))2 dt.

 f, x is the celebrated polynomial smoothing spline of degree 2 m - 1. The
 bandwidth parameter X controls the tradeoff between the infidelity to the data as
 measured by 1/n I=1( f(t.) - yi)2 and the roughness f1l( f (m)(U))2 du of the
 estimated solution.

 Received December 1983; revised July 1985.

 'This research support by the Office of Naval Research under Contract No. N00014-77-C-0675.
 AMS 1980 subject classifications. 65D07, 65DI0, 62J02, 65R20
 Key words and phrases. Spline smoothing, cross validation, maximum likelihood, integral equa-

 tions.
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 COMPARISON OF GCV AND GML 1379

 The generalized cross validation (GCV) estimate of X is the minimizer of V( X),

 (1.2) V(.) = (1/n)I(I - A(X))y 2
 [(l/n)tr(I - A(X))]2'

 where A( X) is the n x n influence matrix, which satisfies

 fn , A( ti

 (1.3) =A(X)y, y = (Y1 ...y Y)

 fn, A( tn )

 The GCV estimate of X estimates the X which minimizes the predictive mean

 square error R(X) defined by

 n

 1 2

 fn, A(t), t E [0, 1] is also a Bayes estimate of f(t), if f is endowed with a certain
 zero mean Gaussian prior, which is partially improper.

 The purpose of this paper is to derive a maximum likelihood (ML) estimate for
 X, based on this prior, which generalizes the usual notion of ML estimates to the
 case of improper distributions, and then to compare the properties of this
 estimate of X (called the GML estimate) with the behavior of the GCV estimate
 of X. We decided to make this comparison at this time because of recent interest
 in related ML estimators.

 The GML estimate we derive is the minimizer of M(X) given by

 (1.5) M(X)= Ldey(I-A(X))y
 [det+ (I - A(X))]/In-m

 where det+ (I - A(X)) is the product of the n - m nonzero eigenvalues of
 (I - A(X)). The GML estimate reduces the usual ML estimate, as first given by
 Anderssen and Bloomfield (1974) when the prior is "proper," and is an extension
 of an estimate recently given by Barry (1983). The comparisons we make between
 GCV and GML also hold for the proper prior case.

 Our comparison of the GCV and GML estimates is based on the criterion of
 minimizing predictive mean square error R(X) defined in (1.4). Although this
 might appear to be a somewhat special criterion, under certain conditions other
 loss functions (for example, mean square error in the derivative) turn out to be
 minimized by a X close to the minimizer of R(X). Some references are given
 below.

 Let Xopt be the minimizer of ER(X), where the expectation is taken over e.
 The asymptotic behavior of X opt and ER(X opt) has been studied by a number of
 authors, under mild regularity conditions on the data points. [See Cox (1983a,b
 1984), Craven and Wahba (1979), Ragozin (1983), Rice and Rosenblatt (1983),
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 1380 G. WAHBA

 Speckman (1985), Utreras (1981), and Wahba (1975).] The results include

 f E 'm-l m opt = ER(Xopt) =(-).

 f e W2m * ER(Xopt) = O( -2m/(2m+

 and this rate is achieved with

 X = O(n -2m/(2m+1))

 f e p =ER(Xopt) = O(n-2mP/(2mP+ l))

 and this rate is achieved with

 X = O(n-2m/(2mP+l))

 Here T m-1 are the polynomials of degree m - 1 or less and Wp = WP(W2m) is the
 class of functions in W2m with 0 < J(l( f (m)(u))2 du < 0o, and satisfying certain
 additional smoothness conditions indexed by p E (1,2], to be defined more
 precisely later. If mp is an integer, then it is conjectured that f e Tp entails that

 f E W27P and f satisfies the homogeneous boundary conditions

 f (j)(0) - f (j)(1) = O, j = m, m + 1,..., mp - 1.
 Let f be fixed and let XGML and XGCV be the minimizers of EM(X) and EV(X),
 respectively. Let the "expectation inefficiency" of Xx relative to Xy be Ix/y
 defined by

 IX/Y = ER(Xx)/ER(Xy).

 In this paper, we obtain information concerning IGMIl/Opt as n - 0o0 under
 three (distinct) "smoothness" assumptions on f, namely

 (1) f ET m 1,

 (2) f W &., forsomep E (1,2],
 (3) f behaves like a "sample function" from a stochastic process with the given

 prior.

 The results are

 (1) IGML/opt 1,

 (1.6) (2)' IGML/oPt 0?
 (3) IGMI /Opt = 1 + o(1).

 The "borderline" case f E W2m with 0 < Jol( f (m)(u))2du and f 4 Wp for any
 p > 1 is unresolved at this time. (We call this the borderline case because
 WI @3 span m -1 = Wm)

 It is well known that if f satisfies (1), (2), (3), or is a borderline case

 (1.7) IGCV/opt = 1 + o(1).

 For numerical and theoretical results, see Craven and Wahba (1979), Erdal
 (1983), Golub, Heath, and Wahba (1979), Utreras (1979, 1980, 1981, 1983), Wahba
 (1977b), and Wahba and Wendelberger (1980). Speckman (1982) has recently
 obtained stronger theoretical results, without the "expectation," and Li (1983)
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 COMPARISON OF GCV AND GML 1381

 has recently related GCV and Stein's unbiased risk estimate. All of the results in
 this paper relate to ER, EV and EM rather than R, V and M. We believe that
 the "E" can be removed, possibly without strengthening the hypotheses, but
 that is not done here.

 In the light of (1.7), it follows that

 (1) IGMIJ/GCV 1,

 (1.8) (2) IGMIJ/GCV =?,

 (3) IGMI /GCV = 1 + O(1)-

 Following these theoretical results we present a small Monte Carlo study with

 three example fs satisfying (2). The inferiority of the GML estimate is percept-
 ibly evident at n = 64 and strongly evident at n = 128.

 Cross validated spline methods have been used with some success in the
 solution of linear integral equations with noisy data. [See Crump and Seinfeld
 (1982), Halem and Kalnay (1983), Merz (1980), O'Sullivan and Wahba (1984), and
 Wahba (1977b, 1979, 1982b).] One of the reasons for this success is that under
 various circumstances the X that minimizes R(X) also minimizes (or nearly
 minimizes) other, possibly more interesting loss functions, for example RD(X) =

 fol( fn, X(u) -f '(u))2dU. [For theoretical results see Cox (1983a), Lukas (1981),
 Nychka (1983), and Ragozin (1983).] Special cases of this may be obtained by,
 e.g., comparing the optimal X for ER(X) and ERD(X) using the results from
 Theorems 1-4 in Rice and Rosenblatt (1983), or by comparing the optimal Xs in
 Theorems 1 and 2 of Wahba (1977b). Numerical evidence supporting this result
 may be found in Craven and Wahba (1979) and Wahba (1979b, 1982b).

 It is fairly straightforward to state and prove most of our results comparing

 GML and GCV in the context of the generalized smoothing spline model, which
 includes spline smoothing on the plane and in several dimensions, and on the
 sphere [Cox (1982), Utreras (1979), Wahba (1979a, 1981a, 1982a), and Wahba and
 Wendelberger (1980)], as well as the integral equation case discussed above. We
 will do that here.

 The generalized smoothing spline model (of which the special spline smoothing
 model is the most widely known special case) is

 (1.9) yi= Lif + ei, i=1,2,...,n,

 where E is as before, f is assumed to be in some reproducing kernel Hilbert space
 VQ of real valued functions on some index set Y, and the Li are bounded linear
 functionals on ?Q. The (generalized) smoothing spline estimate f, x of / is the
 minimizer in XQ of

 i-n (1.10) - E (L-f -y) 1 l n Q=l

 where 11 Q is the norm in XQ, and P is the orthogonal projection operator in
 XQ onto the orthocomplement of the span of m given linearly independent basis
 functions {kj}U -. [See Kimeldorf and Wahba (1971), Wahba (1984), and refer-
 ences cited therein.] The reader only interested in the special spline smoothing
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 1382 G. WAHBA

 model may make the associations: Y= [0,1], 4p(t) = t1-)!, v =
 1,2, .. ., m, JXQ = W2m [0, 1], L f = f (ti ), and II pfI = f()( f (m)(U))2 du.

 When solving (first kind) integral equations, we have

 Li f = K( si, t) f ( t) dt, i = 1 2, ... ., n ,

 where K(*, *) is known.

 In the general case V(X) and M(X) are still defined by (1.2) and (1.5),
 respectively, where now A(X) satisfies

 Li fn, X

 = A(X)y,

 Ln fn, XA

 and R( X) becomes

 1 2
 (1.11) ~ R(X) =- E (Lif -L

 ni=

 The truth of (1.6) and (1.8) will actually be argued in this more general setting,

 with the extra smoothness condition f ( Wp appropriately generalized.
 In Section 2 we derive the GML estimate of X for the model of (1.9) and

 discuss the related maximum likelihood estimates of Barry (1983) and of Wecker

 and Ansley (1982). In Section 3 we obtain the asymptotic behavior of XGMI under
 conditions (1)-(3). In Section 4 we compare XGML' XGCV' and X.pt- Section 5
 presents the Monte Carlo results and Section 6 discusses the extension to the
 model of (1.9).

 For the results under (2) (1.6) we have given very general hypotheses under
 which the conclusions hold. A limitation of this general approach is that verifica-
 tion of the hypotheses in many interesting cases requires further work.

 We briefly indicate both the generality and the limitations of the analytical
 results of (2). First we note (see details in Section 3) that in both the special and
 generalized smoothing spline model I - A(X ) has a representation

 I - A(X) = nXW(D + nXI) 'W',

 where Wn X n__ satisfies W'W = In__ and D = diag(XIn, I ..., Xn-m n) with Xpn ?
 0. Here both W and D depend on (t1 ..., tn) or (L1,..., Ln). Writing (tln ..., tnn)
 or (Lln ,.. ., Lnn) instead of (tl,..., tn) or (L1,..., LO) to denote the emphasis on
 n, define

 | 1l, n f ( tln )Lln f
 (g7 j '). or W'(.f)

 gn-m,un f (tnn) Lnn f

 Our hypotheses for (2) are stated in terms of the conditions (as n x--o, and
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 COMPARISON OF GCV AND GML 1383

 X 0)

 n-rm gn 2n
 (1.12) ? ?x', J independentofn,forsomep c (1,2],

 -trA(/x)?=1 m(X)
 n tr p=X)j_ 1 n?m ( XpvnV

 const( i)
 - Xl/r (1 + o(1)) forj= 1,2andsomer > 1.

 The expressions on the left depend on (tin, ..., tnn) or (Lin... Lnn) as well as f
 and a certain reproducing kernel. In certain very special cases, for example, the

 special spline smoothing model with tin = (i/n) these conditions can be rigor-
 ously related to readily understandable smoothness conditions on f and the

 (known) eigenvalues of Q1, the reproducing kernel for HQ \ {span(A, - . ., m }-
 [See Rice and Rosenblatt (1983) and Utreras (1983).] Conjectures relating to the
 general spline smoothing model may be found in Wahba (1977b, 1977c) and in

 Sections 4 and 6 to follow. Since this paper was written, Nychka and Cox (1984)
 have provided further information on convergence properties of the solution to
 the generalized spline smoothing problem.

 Throughout the paper we assume "some regularity conditions" on the {t1} =

 {tin}. We believe that in the case t E [0, 1] sufficient regularity conditions for the
 results in (2) and (3) of (1.6) are: the {tin} satisfy

 -(1? o(1 )) = f (tn() dt

 for some strictly positive bounded density w; and that the arguments do not

 always hold if the {tin} accumulate to a fixed finite number (independent of n) of
 accumulation points.

 2. The GML estimate of X. The Bayesian model behind the estimate f, .
 goes as follows:

 (2.1) yi =Li f + i, i =1,)2,... ,n,
 where the ci are as before but f(t), t E Y is supposed to be a certain zero mean

 Gaussian stochastic process with a partially improper prior. The meaning of L,
 will be given shortly. Let Q(s, t) be the reproducing kernel for 9Q and let
 Ql(s, t) be the reproducing kernel for the orthocomplement of span {4.} in XQ,
 that is,

 m

 (2.2) QI(s, t) = Q(s, t) - E ?,(s)( t)ky^,
 t, = I

 where k"v is the ,vth entry of the inverse of the Gram matrix { 0P 4), Q} of the
 lop})

 Let
 m

 (2.3) XJ(t) = O j14)j(t) + b'/2Z(t),
 j=l
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 1384 G. WAHBA

 where 0 = (Or,..., am) - A(O, (Imxm), b is some constant, and Z(t), t E 7 is a
 zero mean Gaussian stochastic process independent of 0 with

 EZ(s)Z(t) = QI(s, t).
 In the polynomial spline case, Ql is the covariance of the m-fold integrated
 Weiner process. We let f have the prior distribution of X4, as o co. It is shown
 in Wahba (1978b), in the case Li f = f(ti), that

 (2.4) fn, x(t) = lim E4{f(t)ly1,..., Y4. x
 with X = u2/nb.

 Now, the sample functions X4 are not in -XQ (see below), so that the exact
 meaning of Li must be clarified. According to Parzen (1962) [for further details,
 see Wahba (1982a)], Li is a bounded linear functional on YfQ if and only if L X4
 is a zero mean Gaussian random variable well defined in quadratic mean. Then
 the covariances will be

 (2.5) E(LiX0)(LjX0) = Li(S)LI(t){EXj(s)Xj(t) },
 where Li(S) means L is applied to the operand (in braces) considered as a
 function of s.

 Letting T be the n x m matrix with ivth entry Lio4 and 2 the n x n matrix
 with ijth entry Li(S)Lj(t)Ql(s, t), we have, using (2.3) and (2.5),

 (2.6) {E(LiX4)(LjXt)} = (TT' + bE.
 Using this fact, straightforward substitution in Wahba (1978b) [see also Wahba
 (1983)] can be used to show that (2.4) holds for the {Li} any set of bounded linear
 functions on such that rank T is m. If L f = f(t1), etc., then

 Li(S)LA(OtQl(s, t) = Q1(ti, t1).
 Using (2.1) and (2.6), it follows that

 y -AX(0O, TT' + bE + 2I).

 Setting X = a 2/nb and q = a/b, we have
 (2.7) y - A(O, b(,qTT' + E + nXI)).

 We find the GML estimate of X by letting q -> xc in (2.7) in an appropriate
 manner. We do this by letting Rn-mXn be any n - m x n matrix satisfying
 RR' = In-m and RT= On-mxm. Let

 x R

 Then

 Exx' = b(RER' + nXI),

 lim Exu' = 0,
 (2.8) q *

 lim Euu' = b(T'T)(T'T).
 -q-*00

 Since in the limit the distribution of u does not depend on A, we claim it is
 appropriate to define the GML estimate of X as the (usual) ML estimate based
 on the distribution of x. Peter Green has kindly pointed out to us that this
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 COMPARISON OF GCV AND GML 1385

 argument has previously been used by Patterson and Thompson (1971) in a
 different context. A straightforward calculation gives, that the ML estimate of X
 based on x - X(O, b(RYR' + nXI)) is the minimizer of M(X) defined by

 x'(RER' + nXI) lx

 [det(RER' + nXI)-1 II/n-m-

 Substituting in x = Ry and det(R E R' + nXI)- = det + R'(R? 2R' + n X I) 'R
 gives

 (2.10) M(X) y'R'(RER' + nXI)1Ry
 [det?R'(RER' + nx\I)-1R1I/n-m

 To put M(X ) in final form for further study, we observe that

 .21)R'( RER' + nXAI ) 1R = (Y. + nXAI ) 1 - (E + nXA )-I

 xT(T'(E + nXI) 1T) T'(E + nXI)'.

 To see this, note that both sides of (2.11) have the same action on the m columns

 of T and the n - m columns of (E + nXI)R'. It can be shown from, e.g.,
 Kimeldorf and Wahba (1971) that I - A(X) is equal to nX times the right-hand
 side of (2.11). Thus for X > 0, M(X) can be rewritten

 (2.12) M(X) = y'(I-A(X))y
 [det+ (I - A(X))f /( nm)'

 Anderssen and Bloomfield (1974) were the first to suggest the use of a
 maximum likelihood estimate for X in a smoothing context, and (2.12) will reduce
 essentially to their estimate in the case of a proper prior, that is, when the set of

 {4v} is empty, equivalently IlPf IIQ = 11 f II-. Barry (1983), in a forthcoming thesis,
 has recently obtained the equivalent of (2.12) in two cases where the dimension of
 the null space of P is one. In the two cases he studied, the joint distributions for

 the n - 1 variables (y2 - yl, . ,Yn - Yn- 1) or (y -1 -Y,**,Yn - Y) are proper,
 and he exploited this fact to obtain his estimate. Thus the GML estimate
 generalizes the estimate obtained by Barry.

 We compare this result with a maximum likelihood estimate for X given by
 Wecker and Ansley (1983), (4.5). By making the associations, their X is our 1/nX
 and their A is our (nX)-'(. + nXI), and using (2.11) it can be shown that their
 maximum likelihood estimate is the minimizer of MwA(X) given by

 (2.13) m ~~y'R(RER + nXI)-'Ry (2.13) MWA(X) = [det(. + nI)] /n
 which is to be compared with (2.10) and (2.11). The difference results from the

 fact that they include the estimation of (1k,.... Om) of (2.3) as part of the
 likelihood equations while we do not. [See O'Hagan (1975) for more on the role of
 nuisance parameters in ML estimation.] We remark that Wecker and Ansley are
 in error in their claim that GCV cannot be done with repeated observations.
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 1386 G. WAHBA

 Neither the GCV nor the maximum likelihood estimates require I to be of full
 rank. The only condition on the observations is that the matrix T be of rank m.

 3. Asymptotic behavior of X GML. Let Rn - mxn , be defined as in the previ-
 ous section and let the eigenvalue eigenvector decomposition of RER' be

 (3.1) RER'= UDU'

 where UU' = I__ and D___ is diagonal with diagonal entries X,v Let

 Wnxn-m= RU

 (Win) ... ) Wn-m, n) = Wn_- = W'Y.
 Then

 I - A(X) = nXR'(UDU' + nXUU') 1R

 nXR'U'(D + nXI) UR

 = nXW(D + nXI )W'

 and

 (3.2) M(X) = iiYn--mwP'n(nX/(nX + Xv))

 ( 1 nm(1 - Xvn/(nX + X )))l/n-m
 Letting

 hi ( L f) 91 g, n
 (3.3) = J W'h

 hnJ Lnf k gn-m, n
 we have

 4 = ,[nX/(nX + X g)]2g + C2rn-mnX/(nX + X )

 (3.4) EM(AX) =1 n zm(l - Xpn/(nX + X 1))/(nm)
 Letting

 n-m g2

 (3.5) G(X) n n gpn
 p (nX + Xn
 1 n-m X 1

 (3.6) ( - - [trA(X)-rm],
 n - nX +X n -rn

 n-m Iv I/(n --m)

 (3.7) D(X) = P( nx ) 1/n

 gives

 1 ~XG(X) + ~( L()
 (3.8) -EM(X) = D(1)

 n)D(.
 where 052 =((n -mr)/n)ar2.
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 COMPARISON OF GCV AND GML 1387

 We first assume f E JQ. We must consider the cases IIPf 112 = o and IIPf 112 > 0
 separately. Now IPf IIQ = 0 if and only if f = Em, 0J,, for some 6 = (01,..., e m),
 then h = TO, g= W'h = 0, and G(X) = 0, all X. Then

 (3.9) a2(n - m) EM(X) = (1/(n - m))En> mnX/(nX + Xpn)
 a (n m) ~(Fln -MnX/(nX + X ))l/(n-m)

 and the right-hand side, being the ratio of an arithmetic to a geometric mean, is

 bounded below by 1. Assuming that the Xpn are not all equal, this expression
 achieves its lower bound for X = 00.

 We now return to the case IlPt 112 > 0. Differentiating the right-hand side of
 (3.8) with respect to X, using the fact that

 D(X)
 (3.10) D'(X) = DX)

 X
 and setting the result equal to 0 gives

 [XG(X) + a2(1 - 111(X))] X A_ X)

 (3.11) = D(X)[XG'(X) + G(X) - 1

 a2[ ( + Xt' ,(X) - L2(X)] = XG(X) + X2G'(X) - XG(X)tI1(X).
 Now

 (A X +/ll( /) E jn)2,n,A^ (1n - m P=?l n( Xpn (nX + X+v

 = 2( Xn), say,
 and

 n-rn Xg 2 _ n/x2g 2
 XG(X) + X2G'(X) = L --2 n n_____2n

 v=1 (n? n1) (nX?+Xpn2)
 n-m X g2

 (3.13) -X Y vn 2

 v=1 (nX + Xn = XG,( X ), say.
 Thus, (3.11) can be written

 (3.14) P 2(/X) - XG (X) = 1(/X) [21(/X) - XG(X)].
 It is well known that if 0 < IIPfIIQ < oc it is necessary that X 0 and

 2( X) O 0 in order that R(X) -* 0. Since Ai2(X) ? >i2(X) we will only consider
 roots of this equation for which X -O 0, A2(X) -* 0, and ji (X) -* 0.

 We now want to impose a further "smoothness" condition. Further discussion
 of this condition will appear in Section 4. Define

 n-nm g2/n

 jn v=y n

 p (Xpn/n)p
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 1388 G. WAHBA

 and suppose that Jp < Jp for some p e (1, 2] independent of n. Then

 [ nX 1 g n-r 2nX 2
 Gi(O)-G(1)=L[X J X ? n l (nX + n) 2nA gpn

 n-rn 2

 < 3XP1j gAnln <3XP -Jp
 v=1 (Xpn/n)p

 G(O) -G(A) = E nX _gpn < AP l 9 vrn < P - ii
 (nX ? Xpn) X - r (Xpn/n)P ?

 and so, as X -O 0, G(X) = G(O) + o(1), GJ(X) = G1(0) + o(1), independent of n.
 Now

 17-m g2
 GJ(O) = G(O)= -

 V= vpn

 It can be shown that

 1t-m g2
 (3.15) = IPnIQ I Q

 v=1 vn

 where fn is that element in fQ which minimizes jPf IIjQ subject to Li fn =hi
 i = 1, 2,.. ., n. The demonstration proceeds by showing that

 (3.16)

 jjPf 1j2 = h'(E- - E-T(T E--1T)-1T'E-')h= h'R'(RER')1Rh.
 Thus, as n -* oo, G(O) and G4O) increase monotonically but are bounded above
 by jlPf 112. (Assuming, of course, that the set {L1,..., L,,, J contains the set
 {Ll,..., Ln}O) We have the following

 THEOREM. Suppose

 g (;/n < Jp for some p > 1, independent of n

 and

 (3.17) p1(X) = X1//r(1 + o(1)),

 (3.18) L2(X) = flX/r(1 + o(1)),

 as n -x co for some r > 1. Then,

 /&27 r/(r?+) 1

 (3.19) X GML IIPfn12) rl(r+1) (1 + o(1))
 is a zero of (3.14).
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 COMPARISON OF GCV AND GMI, 1389

 PROOF. Substituting (3.17) and (3.18) into (3.14) gives

 / 1 i~~~~~~~~~ [521
 (3.20) 2XT I/r -XG1(O))(1 + o(1)) = nX/r [nI/r - XG(O)J(1 + o(1)),

 which is satisfied by (3.19). a

 In the case L f = f(t n), with tin = i/n, it is generally believed that the
 asymptotic behavior of [i1(X) and M2(X) can be related to the asymptotic
 behavior of the eigenvalues of the reproducing kernel Q1. [See the heuristic
 argument in Wahba (1977b).] In the special spline smoothing case with HQ = W2m,
 it is known that (3.17) and (3.18) are satisfied with r = 2m. [See Craven and
 Wahba (1979) and Utreras (1980, 1981, 1983).] Roughly, the X,A, behave like n
 times the eigenvalues of the reproducing kernel.

 Let w(s) be a strictly positive smooth density on [0, 1], let

 F(t) = ftw(s) ds, K1(s, t)
 0

 = Q(F-1(s), F-1(t)), and tin satisfy i/n = ft'1w(s) ds.

 Then by the same reasoning as in Wahba (1977b) one could argue that the
 behavior of pL(X) and M2(X) can be related to the behavior of the eigenvalues of
 K1. Letting {(} and {4,} be the eigenvalues and eigenfunctions of K1, we have

 F= fQ(F-1(t), F-1(s))4J(s) ds,
 ()

 and making the change of variables y = F-1(t), x = F-1(s) gives

 ~v4,'(F(y))w1/2(y) = fW1/2(y)Q1(y, x)w1/2(x)4v(F(x))w11/(x) dx,

 which shows that the eigenvalues of K1 are the same as the eigenvalues of

 KA(y, x) = w 1/2(y)Ql(y, x)w'/2(x). Now if Q1 is the Green's function for a 2mth
 order self-adjoint differential operator, K1 is also the Green's function for a

 2mth order self-adjoint differential operator, its eigenvalues are (v= 0(v- 2m)
 and the same heuristic argument gives (3.17) and (3.18) satisfied with r = 2m. In
 the case of thin plate splines in d dimensions with

 || PT || Q = E | I(dxl dx ", e, + a.. 0d=-m d . x' ~ a ' I .. d~

 partial results are available to the effect that (3.17) and (3.18) are satisfied with
 r = 2m/d. [See Cox (1984) and Wahba (1979c).] For information concerning
 tensor product splines on the plane, see Barry (1983), Micchelli and Wahba (1981)
 and Wahba (1978a); for splines on the sphere, see Wahba (1981). Behavior of

 IL (X) for other Li is discussed in Section 6, and very recent results of Nychka and
 Cox (1984) shed light on this question.

 Inspection of the proof of the Theorem reveals that if 0 < IIPf 11 < oX, and the
 L are such that Il P,12 TIlpf 1P , further smoothness assumptions of f cannot
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 1390 G. WAHBA

 change the asymptotic behavior of XGMI* A simple example will be given in the
 next section.

 To complete our study of the behavior of XGMLS, we now consider the case f
 "behaves like" a sample function from the original prior. If f is a random
 function from the original prior, it can be shown that

 Ef g' = bX n

 where Ef is expectation with respect to this prior. Then
 n-m X

 EfG(O)= b A n=b(n- m)
 l,=1 v'n

 and

 Ef 11Pf112= o.

 Of course II Pt I = oc entails f XQ. To see quickly what will happen, set
 9vn = bXvn in (3.4) giving

 (3.-1 n-m(nX/(nX + X,,,a))(Xvn +2/b)
 (3 .21 ) b [?E _ EMlX) = =1-A vn( vnA + A Xpn ) ] - mE(

 Differentiation of the right-hand side of (3.21) or substitution into (3.14) gives
 that (3.21) is minimized by

 a 2

 XGML = nb

 It appears that Wecker and Ansley's ML estimate, call it AWA would be only
 approximately equal to a2/nb in this case as n -x ci, and slightly suboptimal in
 the case f E - -1. It appears that we will have XGMI = 0(1/n), if f is a fixed

 function (not in VQ,!) and the L, are such that
 1 n-m gn

 lim 2 = const.
 n- oc n-m X=1 Xpn

 Conditions under which this will occur are suggested in the next section.

 4. Comparison of XGML' Xopt' and XGCV. We first consider the case
 f E )%. The predictive mean square error R( X) is defined by

 1 n

 R(A) = L(L.fx - L-f )2
 n i=1

 and

 1 ~~~~12 +
 (4.1) ER(X) =-|(I - A(X))hII +-trA2(X)

 or

 (42m E1 n-m nX 2
 (4.2) ER(X) = -?2+ 52~()

 12 1 gpnlX?XVnI
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 COMPARISON OF GCV AND GMI 1391

 If Egvn = 0, then
 2

 (4.3) ER(X) = -trA2(X),
 n

 which is minimized for X = XGML = x, in which case fnA is that element in

 spant{4} best fitting the data in the least squares sense and
 m

 (4.4) ER(cx) = a2
 n

 Thus, from (3.9)

 (4.5) (1) f E span{?k} IGML /opt 1.

 Returning to the general case we have

 m 1 n (m nAX 2
 (4.6) ER(X) - a2-= _ A2 + 2

 n nn
 n-m 2

 (4.7) < A E: + 52 112W
 v= l vn

 (4.8) < XIIPf IIQ + &21i(X)

 If P2(X) = (l/nl/r)(1 + o(1)) for some r, the right-hand side of (4.8) is mini-
 mized by setting

 27 \rl(r +l 1

 (4.9) = rIlPf 12) nrll1)(1 + o(l))

 and ER(Xopt) ? ER(X*) = 0(n-r/(r+1)) (= 0(n-22m/(2in+ 1)) in the special spline
 case). If no further assumptions are made on f it appears that this rate cannot be
 improved upon.

 However, it is well known that if f satisfies certain additional smoothness
 conditions then higher rates of convergence can be obtained by choosing X to go
 to 0 more slowly. We always have, for any p E [1, 2],

 1 n m nX l2 n -m (g2 /n) x 2 <_ _ _ _ _

 =- ;PJn
 p.

 If Jpn is uniformly bounded by Jp independent of n, and P2JX - (l/nXl/r)(1 +
 o(1)), then

 m &21
 (4.11) ER(X) - a2- < PJ + (1 + 0(1)).

 The right-hand side of (4.11) is minimized by

 f 2\ r/(r+l) 1

 X* - mJ j r/(rP?l)(1 + o(1))
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 1392 G. WAHBA

 and

 (4.12) ER(Xopt) < ER(XA) = r(rP+ 1)).

 Thus

 (4.13) IGML/opt = const n p/(rP?)r/(?)x .

 The condition Jpn < Jp is satisfied in some interesting cases. For example,
 suppose JQ = W2m(per), the space of periodic functions in W2m[0, 1] satisfying
 the periodic boundary conditions f (V)(0) = f (v)(1), v = 0, 1, . . ., m - 1, and sup-

 pose Li f = f(i/n). Then, very roughly [for details, see Craven and Wahba (1979)
 and Utreras (1980)],

 lg2 p nf 2 f s = j1f )(cos(2zrvs ) ds or f f(s)sin(27Tvs) ds,

 Apn nX1, X, = (27v) -2m.
 Then if f G W2mP(per) for some 1 < p < 2, we have

 = (2 7TV)2MPfi2 Vl/n (1 + o(1)).
 (Xp/nl)P(

 This example, with f(t) = focos 2 7T ot, say, can be used to show directly that
 ER(XGML) is still O(n 2m/(2m+l)) while ER(X pt) = O(n -4m(4m+l)) by observing
 that in this example

 XG(X) x (2 -T)2m)f2
 (1 ? (7P(),)

 and

 1 n-m [nX 2 (2TV( ) nfo2

 n },=1 \ nX + Xrn j Mn (1 + X(27T.V()2m)2

 and carrying through the minimizations directly.

 For the case Li f = f(ti), we state as a conjecture a general condition for

 p _V= I (vnn)I(Avnln)P to be uniformly bounded. Suppose Q4(s, t) possess
 the Mercer-Hilbert-Schmidt expansion

 QJ(s, t) = XuV(s)u'(t),
 v= I

 where the { X , uv} are the eigenvalues and the eigenfunctions of Q1. (For this it is
 sufficient that JJ_- ,Q7(s, t) ds dt = I X= v < oo [see Riesz and Sz. Nagy (1955)];
 this condition is being implicitly assumed throughout this paper.) Let Jd*( f ) be
 defined by

 (4.14) JP* ( = , (Pf,u)u = f(t)uJt)dt. We=1 i p

 We saythat, f E= (6,K ifO0 <4,p*( f ) < oc . It is conjectured that f E= ' and some
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 COMPARISON OF GCV AND GML 1393

 regularity conditions on the {t }= t nJt=1 n = 1, 2,..., imply that there is
 some constant cp such that

 0 <Jn( f )cpJ*( f).

 To see the behavior of R(X) when f behaves like a sample function, we only

 consider the case gvn = + bX,, ; we suggest that the results can be extended to
 functions f for which limn -l/(n - m vnA ---v const, and we conjec-
 ture that it is sufficient for this that some regularity conditions hold in the Li
 and

 Pf- ZtVUV, fV=( fUV),
 1' = 1

 with limp 0(l/n)En.=If^2/v2 - b for some 0 < b < cc. Letting g2 = bX,,7 in
 (4.2) gives

 n-rm (nX )2 + (a2 /b)Xvn

 nb[ER(X) - ma2] =(nX + Xvn)2
 Differentiating the expression in braces on the right with respect to X and setting
 the result equal to 0 gives

 [(nX)2 + b-Xvn]n(nX + Xvn) = (nX + Xvn) [n(nA)]

 which is satisfied for

 2

 Opt nb

 for every X vn Thus, in this example (assuming X opt and X GML are global
 minimizers), IGML/opt = 1.

 We can summarize the result of the last two sections as follows:

 Let AFQ and L1, ..., Ln be such that

 IL2(X) nk Ir

 for some r > 1, as n -C, --O, and let Wp be defined by
 - f ~~~~n-rn 2~/ J()(

 -=( f: IIPf IIQ > Oand (n)s JP( f ? + 0)

 for some constant Jp independent of n. Then we have the results in Table 1.
 We remark that we do not prove, but merely state as a conjecture that in the

 special spline case with t, = i/n, and mp an integer, that the definitions of Tp
 here and in the introduction are equivalent, and that the methods in, e.g., Cox
 (1983b) and Rice and Rosenblatt (1983), can be used to show it.

This content downloaded from 
�������������73.242.179.64 on Mon, 12 Oct 2020 22:28:39 UTC������������� 

All use subject to https://about.jstor.org/terms



 1394 G. WAHBA

 TABLE 1

 (1) f E SPanfl{4,} - IGML/opt = 1

 (2) f E 'p for some p >1 I GMI/oPt

 (3) f "behaves like" a sample function - IGML/opt = 1 + o(l).

 To compare XGML and XCV we have, from Craven and Wahba, that

 (1) f E span{fv} IGcv/opt = 1.
 (2) f E p ,1(XApt) -> 0 and i2l(xopt)/ 2(Xopt) - 0 imply Gcv/opt = 1 + o(l).

 Although the arguments are carried out for a special case, it is seen by following
 them that the results hold in the generality of this paper.

 Now, suppose f behaves like a sample function from the stochastic process.
 V(X) is given by

 Y4 - w2fw(nX/(nX + X ))2

 (n-ml - Xvn/(nX + X 2
 and

 (4.15) nEV(X) = L"l( /( vn + *2E. ( n/(A +pi)
 ( n-m-l 1-Xvn/(nX + X? )))2

 Replacing g2 by its expected value bXA^ under the prior in (4.5) gives

 1 Yn-' (nX/(nX + A ))2( + a2/b)
 (4.16) Ef nEV(X) (=n-m (2 b ~~~~~(Y._ nA/( nA + APn ))2
 and a straightforward calculation [which appears in Wahba (1977a)] shows that
 the right-hand side of this expression is minimized for X = I2/nb. It appears
 that, for g2 /Xk - const, we have XGCV = O(1/n). The proof of Theorem 4.2 in
 Craven and Wahba shows that = O(1/n), XGCV = O(1/n) and IL1(X)

 l/nXl/r, M2(X) = l/nXl/r for some r > 1 entails that IGcv/oPt = 1 + o(1). We
 conclude that

 (3) f "behaves like" a sample function = IGCV/opt = I + o(1).

 Thus, in each of the three entries in Table 1, we may replace _GML/opt by
 IGML/GCV-

 5. Monte Carlo results. A Monte Carlo study was carried out to see
 whether some of the preceding asymptotic results would be manifest in small to
 medium sized samples. Three experimental test functions were used, given in
 Cases 1, 2, and 3 below.

 CASE 1. f(t) = 1310,5(t) + 3:7,7(t) + P5,10(t)

 CASE 2. f(t) = 16)30,17(t) + 0 f3311(t)
 CASE 3. f(t) = /3120,5(t) + 13:12,12(t) + :37,30(t)
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 COMPARISON OF GCV AND GML 1395

 where

 Ap, q(t) F(p ( q ) t(i - t)q1, 0 < t < 1.

 We considered only m = 2, all of these functions are in W2(per), and the periodic
 smoothing spline in W22 was implemented. The study reported here was done
 simultaneously with the Monte Carlo study in Wahba (1983) but not published

 at that time. Plots of f of Cases 1-3 above and sample Monte Carlo data appear
 there, and some of the values of 'GCV/oPt appearing here for comparison purposes
 are also reported there. We considered only Li f = f(i/n), i = 1,2,..., n, and
 n = 32,64,128. (Some examples with n = 16 were also tried but the results were
 erratic.) Five values of a, a = 0.0125, 0.0250, 0.05, 0.1, and 0.2, were tried. Since

 flo I f(t)l dt = 1, the smallest two values of a represent "engineering accuracy," or
 two-figure data, while a a of 0.2 is one-figure data. For each of the 3 cases x
 3 ns x 5 as, 10 replicates were generated from the model

 Yi f(n - i, ?i - A (0, a2), i = 1,2, ...,In.

 For each replicate the GML and GCV estimates XGMt, and X GCV' the minimizers
 of V(X) and M(X), were computed, along with X.pt the minimizer of R(X). Then
 the inefficiencies IGML/opt and IGcv/opt defined by

 A R(XGML) R(XGCV)
 GML = R(X ) ' GCv = R(X )pt)

 were computed. The Appendix gives a complete table of IGML and IGCV for each

 TABLE 2

 IGMI' IGCV, and the GML score.

 a 0.0125 a = 0.0250 a 0.05 a 0.10 cy 0.20

 GML

 score

 out

 of GML GML GML GML

 n Case IGML IGCV 10 IGML IGCV score IGML IGCV score IGML IGCV score IGML IGCV SCOre

 1 1.49 1.41 1 1.32 1.33 3 1.22 1.94 8 1.25 1.20 2 1.39 1.40 5

 32 2 1.38 1.24 3 1.83 1.27 1 1.41 1.09 12 1.23 1.07 21 1.05 1.07 6

 3 1.50 1.45 4 1.51 1.13 0 1.62 1.43 1 1.17 1.11 3 1.12 2.02 52

 1 1.40 1.07 2 1.40 1.09 0 1.23 1.05 0 1.48 1.83 52 1.22 1.32 8

 64 2 2.09 1.31 1 1.49 1.33 2 1.43 1.16 1 1.24 1.05 2 1.18 1.06 2

 3 1.94 1.10 0 1.51 1.06 0 1.30 1.14 1 1.20 1.21 1 1.12 1.45 4

 1 1.67 1.06 1 1.39 1.09 1 1.29 1.06 2 1.32 1.16 2 1.07 1.50 3

 128 2 1.75 1.03 0 1.59 1.07 0 1.38 1.03 0 1.26 1.06 1 1.30 1.18 0

 3 1.69 1.09 1 1.34 1.07 0 1.28 1.07 2 1.20 1.04 0 1.23 1.19 3
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 1396 G. WAHBA

 of the 3 x 3 x 5 sets of 10 replicates. A summary of this data appears in Table 2.

 For each n, a, and case, Table 2 gives IGMI and IGCv, where IGMI is the average
 of the 10 replicated values of IGMI, and similarly for IGCV. Table 2 also gives the
 GML score, defined as the number of times out of 10 replicates, that IGMI. < 'IGCV
 A tie is counted as 2. It can be seen that in the extreme NE corner of the table,

 n = 32, a = 0.2, GML appears to have a modest edge over GCV (perhaps not
 "significant"), and mixed results obtain in other entries towards the NE. For

 smaller a and all of the n = 128 entries except the a = 0.20 case, the GCV edge is
 fairly striking. The results of this experiment, with n = 32 and 64, are in rough

 agreement with the Monte Carlo results of Barry (1983) and Davies et al. (1983).
 Barry considered n = 20 and 40, and Davies et al., considered n = 50.

 6. The case of general Li. We may study the asymptotic behavior of XGMI,
 XG(:V and opt with general L, if the {L.} can be imbedded in a nice family Ls,

 s E 9P , of bounded linear functionals on XQ. This generally can be done if one is
 trying to solve a so-called Fredholm integral equation of the first kind. To show
 how this study proceeds, we first review some relevant facts from Nashed and
 Wahba (1974).

 Let Y' be an index set and, for each s E $", let L. be a bounded linear
 functional on XQ. Later we shall let Li = LS,. We can define a linear operator X,
 with domain XQ and range contained in the real valued functions on Y' by

 &f = g, g(s) = (Xf )(s) = Lf, f E .Q, s E/.
 The most interesting case concerns Y an integral operator,

 (Yf )(s) = JK(s, t)f(t) dt, s E 5",

 for some known K. It was shown by Nashed and Wahba (1974), that

 X (A"Q ) 3fR'

 where 4'R is the reproducing kernel space with reproducing kernel R( u, v) with

 R(u, v) = LU(S)LV(t)Q(s, t),

 which, if Y is an integral operator, becomes

 R(u, v) = JK(u, s)Q(s, t)K(v, t) dsdt.

 We also have X( dFQ,) = A'R, where

 R1(u, v) = Lu(S)LV(t)QI(s, t).

 The null space of X in XQ consists of all f e YKQ with L, f = 0, s E Y/. Let ,'
 be the null space perpendicular of AX in AKQ. If we endow JVR with its
 reproducing kernel space topology, then there is a 1 :1 inner product perserving
 map between V and a'R = )F( Y) under which

 (6.1) G E 9 f Et 'R
 and

This content downloaded from 
�������������73.242.179.64 on Mon, 12 Oct 2020 22:28:39 UTC������������� 

All use subject to https://about.jstor.org/terms



 COMPARISON OF GCV AND GML 1397

 whenever f , f2 E V, Xt = 9 I tf2 = g2. Thus the geometry of Y and -'R
 are the same under the 1:1 correspondence " - " given in (6.1).

 We assume that the dimension of the span of {YP,1 is m. (If it is not, T

 cannot be of rank m.) Let P be the orthogonal projection in X'R onto A*R,
 (which is the orthocomplement of span {)F4+}). Letting X+ be defined, for g in
 'R as that element in A"R of minimal norm which satisfies Y{f = g, we have
 Xf- 4-(-R) Y= X ehz, {?R}, PE P g - Pg, and so VPY{g|j2 = ||PgJ|2. Let
 gn A be that element in VR which minimizes

 1 (g(s.) -yi)2 + XIIPgIIR-
 n R=

 Using g(s.) = Lif, RPgIIR = I QPY{gj[Q, and the fact that fn, must be in , it
 can be shown that (0fn, = gn x and 'i+9gn A = fn A. Furthermore,

 Il f- fn, AIIQ 1 X= -f - fn, AIIQ + 1 f - f f IIQ
 and

 1, ftn, X112= ljg - gll, All2
 by (6.2). Further details may be found in Nashed and Wahba (1974).

 Now consider the problem of studying the behavior of XGML' X GCV and Xopt
 for the case of general LO, and suppose the L, can be embedded in a family L.,
 s EE J, by Li = L8. The problem then reduces to examining the properties of g
 and gns A in VXR with the loss function of (1.11) becoming R(X) =
 (1/n) Il(g(Si) - gn0(sI))2 The entries of E are RI(s1, sj). Thus if the si are
 regularly distributed, the behavior of the {(X,) will be related to the eigenvalues
 of RI (instead of Q1). This can be used in some cases to establish the asymptotic
 behavior of Ml(X) and /L 2(X) [see, e.g., Lukas (1981), Rice and Rosenblatt (1983),
 and Wahba (1977b)].

 Conditions (1)-(3) on f can now be transported to conditions on g - Y{f and
 we have

 (1) g E span )r{40} IGML/opt 1
 (2) g E ep for some p > 1 ' GM L/opt
 (3) g "behaves like" a sample function IGMI, /Pt = 1 + o(l).

 With some abuse of notation, we are letting 6p be defined by

 2g Pg~> 0 and n-ng/no1)
 ,ep = g: ll pgll R > =ad (;Xvnln)p <Jp(g )( l + o ()) )

 for some constant Jp independent of n.
 Let Jp*(g) be defined by

 p Y(g)= (Pg,&)

 where { X and i,)} are the eigenvalues and eigenvectors of R1, and say that
 g E Wp* if 0 < Jp*(g) < xo. It is now conjectured that g (E p* and some
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 1398 G. WAHBA

 regularity conditions on the {s,}, i = 1,..., n, imply that g E = *p. Since

 lig -gn IIR = Q - l

 the study of the optimal X with certain other loss functions referenced to f can be
 studied by examining the problem in ?R. For example, compare the methods and
 conclusions of Theorems 1 and 2 of Wahba (1977b). There is some continuing
 research in this area [see Cox (1983a) and Nychka (1983)]. We remark that the

 generalized spline smoothing problem has recently been extended to nonlinear
 functionals and non-Gaussian errors by O'Sullivan (1983).

 7. Acknowledgments. We wish to thank J. A. Hartigan for providing us
 with an early version of Barry's thesis, and we would like to acknowledge many
 stimulating discussions during the Madison miniseminar, especially with Dennis

 Cox, Tom Leonard, Mark Lukas and Doug Nychka. Special thanks go to

 Christopher Sheridan, presently with IBM, who wrote the computer program for
 the Monte Carlo studies.

 Appendix. Values IGML and IGCV for all replicates. ISUBM = IGML; ISUBV

 = IGCV; REPL = replicate number.

 CASE 1

 a 0.0125 O 0.025 a=0.050 a 0.10 0=O.20

 REPL ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV

 n= 32 1 1.501 1.015 1.698 1.410 1.481 1.218 1.623 1.461 1.769 1.331

 2 1.317 1.018 1.066 1.013 1.016 1.195 1.040 1.625 1.030 1.307

 3 1.101 1.109 1.184 1.002 1.092 1.004 1.072 1.047 1.002 1.016

 4 1.282 1.087 2.071 1.442 1.210 4.219 1.961 1.340 1.084 1.021

 5 1.343 1.022 1.176 1.001 1.268 1.856 1.067 1.065 1.112 1.019

 6 1.440 1.034 1.054 1.108 1.027 1.069 1.262 1.129 1.010 1.243

 7 2.714 1.959 1.190 1.055 1.000 1.314 1.007 1.044 3.576 3.762

 8 1.637 1.200 1.117 1.124 1.792 2.953 1.109 1.048 1.026 1.241

 9 1.303 1.019 1.550 3.120 1.002 1.351 1.246 1.205 1.137 1.011

 10 1.226 1.000 1.094 1.003 1.310 3.317 1.096 1.014 1.239 1.065

 n = 64 1 1.276 1.001 1.357 1.065 1.265 1.101 1.082 1.988 1.012 1.088

 2 1.351 1.010 1.156 1.058 1.068 1.027 2.597 1.811 1.000 1.239
 3 2.105 1.000 2.035 1.347 1.204 1.062 1.060 1.652 1.279 1.052

 4 1.230 1.004 1.155 1.069 1.107 1.000 1.187 2.100 1.045 1.095

 5 1.426 1.074 1.068 1.064 1.117 1.049 3.363 3.363 1.000 1.277

 6 1.879 1.087 1.730 1.178 1.175 1.008 1.083 1.024 1.002 1.136

 7 1.096 1.236 1.320 1.002 1.450 1.076 1.078 1.003 1.031 1.021

 8 1.118 1.073 1.152 1.007 1.422 1.096 1.223 3.262 1.012 1.181

 9 1.357 1.010 1.648 1.139 1.281 1.014 1.075 1.004 1.220 1.288

 10 1.114 1.235 1.396 1.005 1.210 1.019 1.000 1.109 2.556 2.865

 n= 128 1 2.040 1.127 2.310 1.428 1.051 1.129 1.000 1.217 1.094 1.010

 2 1.511 1.000 1.394 1.179 1.344 1.027 1.269 1.027 1.186 1.020

 3 1.286 1.062 1.211 1.009 1.168 1.000 1.749 1.440 1.058 1.001

 4 2.124 1.091 1.419 1.020 1.422 1.039 1.159 1.009 1.053 1.676

 5 2.063 1.115 1.132 1.026 1.689 1.124 1.020 1.091 1.036 1.009

 6 1.208 1.007 1.072 1.112 1.586 1.155 1.113 1.010 1.177 1.023
 7 1.918 1.035 1.375 1.000 1.286 1.015 1.198 1.023 1.013 1.007

 8 1.933 1.085 1.191 1.000 1.093 1.041 2.492 1.810 1.000 1.192
 9 1.101 1.116 1.689 1.141 1.154 1.003 1.075 1.003 1.003 5.036

 10 1.513 1.000 1.145 1.023 1.077 1.078 1.094 1.007 1.088 1.023
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 CASE 2

 a=0.125 O.025 a=0.050 a=0.10 a=0.20

 REPL ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV

 n = 32 1 1.674 1.389 1.600 1.600 1.318 1.318 1.369 1.173 1.046 1.293

 2 1.234 1.234 1.860 1.860 1.503 1.000 1.114 1.004 1.003 1.007

 3 1.989 1.504 2.053 1.018 1.207 1.029 1.084 1.001 1.224 1.171
 4 1.601 1.601 1.772 1.013 1.317 1.001 1.001 1.107 1.000 1.027

 5 1.382 1.382 1.487 1.232 1.468 1.035 1.774 1.205 1.093 1.045

 6 1.176 1.176 1.841 1.133 1.369 1.053 1.137 1.050 1.017 1.047

 7 1.000 1.000 1.430 1.042 1.082 1.030 1.253 1.063 1.075 1.052
 8 1.275 1.093 3.454 1.149 1.043 1.223 1.306 1.032 1.002 1.012

 9 1.509 1.039 1.599 1.289 2.186 1.240 1.220 1.017 1.001 1.(09
 10 1.000 1.000 2.205 1.387 1.607 1.021 1.068 1.044 1.037 1.000

 = 64 1 2.280 1.008 1.567 1.000 1.437 1.041 1.243 1.023 1.042 1.005

 2 1.676 1.004 1.139 1.073 1.547 1.053 1.470 1.134 1.130 1.010
 3 1.673 1.021 1.729 1.088 2.162 1.235 1.104 1.000 1.003 1.082

 4 2.220 2.220 1.843 2.630 1.480 2.219 1.434 1.070 1.431 1.137

 5 2.219 1.005 1.820 1.143 1.473 1.047 1.091 1.001 1.039 1.004
 6 2.789 2.730 1.241 1.025 1.389 1.000 1.285 1.012 1.566 1.227

 7 2.237 1.004 1.730 2.209 1.215 1.000 1.172 1.024 1.219 1.002

 8 1.564 1.010 1.302 1.050 1.255 1.005 1.491 1.089 1.098 1.(00

 9 2.002 1.034 1.122 1.051 1.291 1.013 1.036 1.057 1.227 1.047
 10 2.186 1.047 1.440 1.050 1.124 1.026 1.027 1.081 1.002 1.101

 n 128 1 1.767 1.024 1.573 1.006 1.336 1.000 1.070 1.025 1.499 1.285
 2 1.315 1.019 1.379 1.011 1.638 1.1(17 1.166 1.031 1.087 1.002

 3 1.974 1.185 1.618 1.022 1.257 1.000 1.151 1.023 1.778 1.719

 4 1.736 1.005 1.744 1.038 1.271 1.004 1.285 1.016 1.258 1.133
 5 2.036 1.107 1.503 1.022 1.711 1.052 1.015 1.144 1.184 1.044

 6 2.365 1.014 2.315 1.486 1.188 1.001 1.122 1.000 1.021 1.036
 7 1.518 1.000 1.346 1.012 1.334 1.001 1.278 1.051 1.153 1.029

 8 1.485 1.000 1.438 1.006 1.351 1.000 1.765 1.250 1.806 1.446

 9 1.769 1.000 1.560 1.080 1.547 1.026 1.291 1.012 1.052 1.002

 10 1.490 1.002 1.433 1.019 1.205 1.062 1.416 1.004 1.109 1.076

 CASE 3

 0=O.0125 a = 0.025 a = 0.050 a = 0.10 a 0.20

 REPL ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV ISUBM ISUBV

 n = 32 1 1.061 1.061 1.963 1.249 1.081 1.023 1.135 1.046 1.005 1.055
 2 1.494 1.491 1.597 1.169 2.913 2.448 1.247 1.272 1.117 1.117
 3 1.329 1.329 1.453 1.069 1.165 1.005 1.000 1.014 1.699 1.479

 4 2.156 1.931 1.653 1.071 1.542 1.244 1.301 1.161 1.042 1.469

 5 1.380 1.096 1.203 1.154 1.331 1.069 1.292 1.244 1.126 1.223

 6 1.293 1.293 1.206 1.090 2.105 2.105 1.001 1.178 1.018 2.703

 7 1.543 1.543 1.387 1.002 1.042 1.083 1.112 1.018 1.021 1.001
 8 1.431 1.431 1.615 1.188 1.166 1.045 1.117 1.019 1.007 1.002

 9 1.654 1.654 1.376 1.287 2.643 2.643 1.110 1.001 1.025 1.039
 10 1.661 1.661 1.593 1.075 1.228 1.062 1.400 1.192 1.093 1.079

 n = 64 1 1.882 1.052 2.298 1.348 1.283 1.008 1.094 1.002 1.082 1.006

 2 1.736 1.000 1.429 1.007 1.141 1.000 1.377 1.140 1.240 1.183
 3 1.992 1.209 1.446 1.023 1.070 1.015 1.022 1.004 1.091 4.089

 4 1.935 1.258 1.637 1.084 1.601 1.371 1.258 2.660 1.116 1.029

 5 1.635 1.028 1.432 1.046 1.605 1.337 1.280 1.072 1.087 1.746

 6 2.350 1.000 1.481 1.019 1.034 1.076 1.228 1.084 1.052 1.000

 7 1.804 1.000 1.153 1.014 1.143 1.004 1.444 1.141 1.001 1.153

 8 1.884 1.028 1.292 1.007 1.634 1.527 1.024 1.017 1.035 1.007

 9 1.768 1.090 1.356 1.018 1.426 1.018 1.152 1.010 1.000 1.050
 10 2.505 1.342 1.596 1.024 1.086 1.018 1.093 1.023 1.497 1.201

 n= 128 1 1.447 1.017 2.024 1.274 1.256 1.000 1.539 1.236 1.000 1.121

 2 1.477 1.005 1.320 1.021 1.238 1.002 1.086 1.005 1.335 1.157

 3 1.646 1.001 1.230 1.058 1.536 1.126 1.366 1.049 1.031 1.022

 4 1.865 1.055 1.198 1.030 1.043 1.234 1.031 1.018 1.925 1.728
 5 1.757 1.029 1.291 1.011 1.214 1.007 1.044 1.019 1.004 1.047

 6 1.541 1.005 1.407 1.008 1.103 1.012 1.368 1.073 1.007 1.188
 7 1.243 1.064 1.466 1.044 1.340 1.000 1.127 1.006 1.563 1.284
 8 2.567 1.646 1.221 1.150 1.745 1.224 1.224 1.016 1.029 1.017

 9 1.578 1.020 1.110 1.048 1.262 1.024 1.135 1.008 1.038 1.000
 10 1.802 1.019 1.157 1.024 1.046 1.072 1.062 1.015 1.355 1.300
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