
MA 323 Geometric Modelling

Course Notes: Day 29

Composite Rectangular Surface Patches

David L. Finn

Today, we want to extend rectangular Bezier patches to composite Bezier patches. This
is the natural extension of the methods from Ck Bezier splines and Gk Bezier splines to
patches. For simplicity, we will only consider Ck smoothness the ability to join patches in
a Gk manner can also be done in the natural manner. The ability to join patches together
relies upon some different concept as to how the patches are to be joined together. This
is the start of adding a topological condition into our methods. This did not really play
a role in curve methods because there is really only one manner of joining two curves. In
joining surface patches, one must consider how the patches are joined, for instance given two
rectangular Bezier patches m× n and p× q, how is it possible to join them together? Not
unless one of the following hold m = p, m = q, n = p or n = q so that the common Bezier
curve on an edge can be the same curve. As a further example, given three rectangular
patches, is it possible to join them together smoothly as illustrated in the diagram below?
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Figure 1: Can three rectangular patches be joined together in this manner?

29.1 Composite patches

To create a surface, by joining individual patches, one method is to make sure the surfaces
have an entire curve in common otherwise one patch will pass through another patch or the
patches will not meet. Joining to patches continuously is pretty easy as long as the patches
are the same order. It is only necessary that they share an common edge set of control
points, see figure below for continuously joining two bicubic patches.

It is important that the size of the control grids be compatible to join the patches contin-
uously. It is also important that we are considering control points. If we use data points
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Figure 2: Joining two bicubic Bezier patches continuously

and interpolate or approximate instead, we are not guaranteed that the patches will join
continuously. It can be forced by using the “right” values for the parameters.

The basic question to consider is: Why does sharing the same control point ensure that the
patches are joined continuously? The answer lies in the construction of the patch. Recall a
patch is defined by

X(u, v) =
m∑

i=0

n∑

j=0

Bm
i (u)Bn

j (v) pij .

The edge control points in the control grid correspond to u = 0, u = 1, v = 0, v = 1. We
will consider the edges u = 0 and u = 1. When u = 0, Bm

i (0) = 0 if i > 0 and Bm
0 (0) = 1.

Therefore, the edge X(0, v) of the patch corresponds to the Bezier curve

n∑

j=0

Bn
j (v) p0,j .

Similarly, when u = 1, Bm
i (1) = 0 if i < m and Bm

m(1) = 1, so the edge of the patch P (1, v)
corresponds to the Bezier curve

n∑

j=0

Bn
j (v) pm,j .

Thus, given two patches with control points pi,j and qi,j as shown below with pm,j = q0,j ,
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we have X1(1, v) = X2(0, v) where X1 and X2 are the patches corresponding to control
grids p and q.

29.2 Derivatives of Bezier patches

To join patches together smoothly, we need to examine the derivatives of patches. Given a
control net for a Bezier patch (a grid of control points) pi,j . The Bezier patch is given by

P (u, v) =
m∑

i=0

n∑

j=0

Bm
i (u)Bn

j (v) pi,j .

We can take the partial derivatives with respect to u and v to get

∂P

∂u
=

m∑

i=0

n∑

j=0

(Bm
i (u))′Bn

j (v) pi,j

and
∂P

∂v
=

m∑

i=0

n∑

j=0

Bm
i (u) (Bn

j (v))′ pi,j .

Recalling the relations between the derivatives of the Bernstein polynomials,

d
dt (Bn

i (t)) =
(

n
i

) (
i ti−1(1− t)n−i − (n− i) ti(1− t)n−i−1

)

= n

(
n− 1
i− 1

)
ti−1(1− t)n−i − n

(
n− 1

i

)
ti(1− t)n−1−i

= n
[
Bn−1

i−1 (t)−Bn−1
i (t)

]
,

we have
∂P

∂u
=

m∑

i=0

n∑

j=0

m
[
Bm−1

i−1 (u)−Bm−1
i (u)

]
Bn

j (v) pi,j

and
∂P

∂u
=

m∑

i=0

n∑

j=0

n Bm
i (u)

[
Bn−1

j−1 (v)−Bn−1
j (v)

]
pi,j .

This gives a formal method for differentiating a Bezier patch from the functional represen-
tation of the Bezier patch.

We can express these forms of the derivatives in terms of first differences of the control
net. We now have two first differences, one for each direction in the grid. We have a first
difference in the u-direction (the i index)

∆1,0pi,j = pi+1,j − pi,j ,

and a first difference in the v-direction (the j index)

∆0,1pi,j = pi,j+1 − pi,j .

By rearranging the sums, we have

∂P

∂u
=

m−1∑

i=0

n∑

j=0

mBm−1
i (u) Bn

j (v)∆1,0pi,j
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and
∂P

∂v
=

m∑

i=0

n∑

j=0

nBm
i (u) Bn−1

j (v)∆0,1pi,j .

Notice that each derivative is also a Bezier patch. The grid on which the Bezier patch is
defined is smaller and consists of vectors.

To take the second derivatives of a Bezier patch, we proceed in a similar manner. As with
Bezier curves, since the derivative of a Bezier patch is a Bezier patch, we can use the above
methods to define the second derivatives. The second derivatives are

∂2X

∂u2
=

m−2∑

i=0

n∑

j=0

m(m− 1)Bm−2
i (u)Bn

j (v)∆2,0pi,j

and
∂2X

∂u∂v
=

m−1∑

i=0

n−1∑

j=0

mnBm−1
i (u)Bn−1

j (v)∆1,1pi,j

and
∂2X

∂v2
=

m∑

i=0

n−2∑

j=0

n(n− 1)Bm
i (u) Bn−2

j (v)∆0,2pi,j

where ∆k,lpi,j are the appropriate differences. The differences above are given by

∆2,0pi,j = ∆1,0pi+1,j −∆1,0pi,j

= pi+2,j − 2pi+1,j + pi,j

and
∆1,1pi,j = ∆1,0pi,j+1 −∆1,0pi,j

= ∆0,1pi+1,j −∆0,1pi,j

= pi+1,j+1 − pi,j+1 − pi + 1, j + pi,j

and
∆0,2pi,j = ∆0,1pi,j+1 −∆0,1pi,j

= pi,j+2 − 2pi,j+1 + pi,j .

We can proceed to take higher derivatives in a similar manner.

The mixed partial derivative ∂2X/∂u∂v has special significance for patches, as of the second
partial derivatives at corners it is the only one that uses the interior control points. This
vector (∂2X/∂u∂v), all derivatives of patches are vectors, is called the twist vector for it
states how the tangent vectors ∂X/∂u and ∂X/∂v twist as the other variable is moved. We
will explore this in detail tomorrow.

29.3 Joining Patches Smoothly

Joining patches together smoothly is now easy. It is equivalent to arranging the control
grids of the two patches so that each line forms a Ck spline. For instance, consider the
control grids pij and qij below with pmj = q0j so they join continuously.
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To have the patches joined in a C1 fashion, we need

pmj = q0j =
1
2
(pm−1,j + q1,j)

for all j. Likewise to join two patches in a C2 fashion, we need in addition to the conditions
for C0 and C1 joining that

pm−2,j − 2pm−1,j + pm, j = q2,j − 2q1,j + q0,j

for all j.

Constructing C1 patches and C2 patches (using bicubic patches as the base patch) is now
easy. We just need to set up the control points in a Ck fashion, that is supply the spline
control points in the correct grid structure, in both directions for the grid. Here, we are
aided directly by the patch construction as a tensor product surface. Individual rows (or
columns) in the spline control grid will correspond to constructing the corresponding Bezier
splines. See diagram below for the structure to construct a C1 joining of four patches in a
rectangular patchwork fashion
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Figure 3: Joining of four rectangular patches in a C1 fashion.

We can also extend the Bezier patches to B-spline patches by supplying knot sequences,
and using the knot sequences with a control grid to define a tensor product B-spline patch.
We use the knot sequence in the u direction to define basis functions Ni,k(u) and a knot
sequence in the v direction to define basis functions Nj,l(v). A B-spline patch is then

p(u, v) =
∑

i

∑

j

Ni,k(u)Nj,l(v)pi,j .

As B-splines include Bezier curves and Bezier splines, B-spline patches include Bezier patches
and composite Bezier patches. All that is needed is to choose the right type of knot sequence.
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29.4 Other Ways of Joining Patches

Let us return to the question at the start of the notes, can you join three rectangular patches
together in the following manner
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Figure 4: Can three rectangular patches be joined continuously in this manner?

The answer is yes. One must just have the requisite placements of control points correct.
Functionally the patch can not be represented in a nice global coordinate system, as the
patchwork quilt nature of joining in the previous subsection suggests. For instance, here is
the compatibility constraints for a C0 joining.
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Figure 5: Compatibility conditions for a continuous joining

A continuous joining in this fashion is pretty straight forward, but what about a differen-
tiable joining? Does it even make sense to talk about a C1 joining of rectangular patches
in this manner? In fact, a C1 joining can be considered across each edge, but this does
not mean anything in terms of a global differentiability condition in a variable defined on
the surface. This is really the notion of a G1 surface, meaning that there is a well-defined
tangent plane everywhere. Constructing the surface so that the joint across edge is C1 will
ensure a well-defined tangent plane. However, this places extra compatibility conditions
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on the three interior points p22, q12 and r11 surrounding the common corner point to the
rectangular patches p33 = q03 = r00 in the figure above. In fact, if the patches are joined
across the common edges in a C1 fashion one must have that p22, q12 and r11 are coplanar.
Showing this is an exercise.

Typically to create a surface out of rectangular patches in this manner requires a irregular
rectangular grid, to create closed surfaces. In this situation, one does not create a patch
from generalizing Bezier splines but rather looking at individual Bezier patches and joining
them together in a smooth fashion.

EXERCISES

1. Use the files splinepatch.mws and splinepatch.txt and the applets to explore the
shape of of rectangular C1 and C2 Bezier spline patches having open ends (a generic
open surface), see diagram below. What advantage is this over Bezier patches?

2. Use the files bsplinepatch.mws and bsplinepatch.txt to explore the shape of B-
spline patches.

3. Consider the figure below where two rectangular patches are joined along two com-
mon edges at a corner, see diagram below. What conditions must be placed on the
patches so they join continuously (size of the patches)? so they join smoothly (C1)
(relationships between control points)?
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Figure 6: Can two rectangular patches be joined in this manner?

4. Show that the compatibility conditions for joining of three bicubic patches as in the
diagram below in a G1 fashion, by joining the patches in a C1 manner across identified
edges, closest interior points to the common corner to be coplanar.

5. Some question about joining patches together to create a closed surface,

(a) Is it possible to create a sphere by joining rectangular patches together in a
regular rectangular grid fashion (four rectangles meet at one common point)? If
so how?

(b) Can you do it with a irregular rectangular grid (any number of rectangles can
meet at a common point)? If so how?

(c) What is the minimum number of rectangles needed in either case?
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Figure 7: Can three rectangular patches be joined continuously in this manner?


