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Abstract

In nonparametric regression the smoothing parameter can be selected by minimizing a Mean
Squared Error (MSE) based criterion. For spline smoothing one can also rewrite the smooth
estimation as a Linear Mixed Model where the smoothing parameter appears as the a priori
variance of spline basis coefficients. This allows to employ Maximum Likelihood (ML) theory
to estimate the smoothing parameter as variance component. In this paper the relation between
the two approaches is illuminated for penalized spline smoothing (P-spline) as suggested in
Eilers and Marx Statist. Sci. 11(2) (1996) 89. Theoretical and empirical arguments are given
showing that the ML approach is biased towards undersmoothing, i.e. it chooses a too complex
model compared to the MSE. The result is in line with classical spline smoothing, even though
the asymptotic arguments are different. This is because in P-spline smoothing a finite dimensional
basis is employed while in classical spline smoothing the basis grows with the sample size.
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1. Introduction

Penalized spline estimation (P-spline) for smoothing traces back to Parker and Rice
(1985) and O’Sullivan (1986), but it was Eilers and Marx (1996) who made the method
popular by illuminating the numerical practicability and flexibility of the approach. The
major idea behind P-spline estimation is thereby simple. For smooth estimation a large
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but finite dimensional basis is employed. Instead of simple parametric fitting, however,
which would lead to variable and wiggling estimates, a penalized version is pursued
to provide a smooth fit. Practical experience has shown that the concrete specification
of the basis and its dimension has little influence on the fit (see e.g. French et al.,
2001 or Ruppert, 2002). More relevant for the smoothness of the fit is the amount of
penalization applied. Some first theoretical considerations on how to choose the right
amount of penalization are found in Wand (1999) or Aerts et al. (2002).

The idea of P-spline smoothing is strongly related to Linear Mixed Models. This
becomes obvious if the basis coefficients are considered as random effects and the
penalization appears as a priori distribution imposed on the basis coefficients. In this
scenario spline smoothing is equivalent to (maximum) posterior Bayes estimation in
the resulting Linear Mixed Model and the smoothing parameter plays the role of the a
priori variance of the basis coefficients. This in turn can be estimated using Maximum
Likelihood (ML) theory as suggested in Wecker and Ansley (1983) and further dis-
cussed, e.g. in Wahba (1985), Li (1985), Stein (1990) or Speckman and Sun (2001).
Recently, Efron (2001) and Kou and Efron (2002) illuminate the connection from a
geometrical point of view. References discussing the relation between spline smoothing
and Mixed Models in general include also Green and Silverman (1994), Brumback and
Rice (1998) or Verbyla et al. (1999).

For P-spline smoothing there appears a major difference compared to classical spline
smoothing treated in the above-cited papers. In classical spline smoothing for each
observation a separate basis function is included. This means that the resulting basis
matrix is n X n dimensional, with n as sample size. In contrast, for P-spline smoothing
a prespecified high but finite dimensional basis is used. This allows to exploit the
link to Linear Mixed Models not only from a theoretical angle but also practically. In
particular Linear Mixed Models software (see e.g. Pinheiro and Bates, 2000) can be
used for smoothing (see Wand, 2003). In case of a non-normal response this generalizes
to Generalized Linear Mixed Models with penalized quasi-likelihood estimation (see
also Breslow and Clayton, 1993). Again, in the Linear Mixed Model formulation the
smoothing parameter steering the amount of smoothing is the ratio of the a priori
variance of the basis coefficients and the residual variance. This in turn suggests to
take the ML or the Residual Maximum Likelihood (REML) estimator (Harville, 1977)
as smoothing parameter selection.

This note intends to illuminate the REML choice in more depth. We show that
asymptotically REML-based smoothing parameter selection is biased towards under-
smoothing. This resembles results found for spline smoothing (see e.g. Efron, 2001).
Our asymptotic arguments are however different to those used in classical spline
smoothing. This is since for P-spline smoothing a finite dimensional basis is used
while for classical spline smoothing the basis grows with the sample size. This also
implies that asymptotically P-spline smoothing leads to standard parametric fitting and
penalization is losing its effect for growing sample size.

The paper is organized as follows. In Section 2, we introduce different Smooth-
ing parameter selection routines. Asymptotic investigation is provided in Section 3
while Section 4 explores the finite sample performance. A discussion concludes the

paper.
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2. Smoothing and mixed models
2.1. Mean-squared error

Let us consider the simple smoothing model
yvi=f(xi)+e i=1,...,n (1)

with x; as metrical covariate, f(-) as unknown smooth function and ¢; as independent
normally distributed residuals, i.e. & ~ N(0,0?). For simplicity of presentation we will
assume that ¢? is known. P-spline estimation is now pursued by replacing f(-) by the
parametric form

yi= x,-Tﬂ + Z,-Tb + &, (2)

where x; is a low-dimensional parametric basis build from x;, e.g. the linear basis
x;=(1,x)", and z; is a high-dimensional basis linearly independent of x;. A convenient

choice is to use truncated polynomials, i.e. z; = {(x; — T1)1,...,(x; — Tk )4 } with (+)4
as positive part, that is (x). =x for x > 0 and (x). =0 for x < 0. The knots t; are
thereby fixed values covering the range of x;, i=1,...,n.

The general idea is to choose basis z; in a “lush” and “generous” manner such that
the difference 6(x;) = f(x;) — x] B+ z'b is of ignorable size. In particular we assume
that dimension K of basis z is large but finite and fixed independently of sample size
n. Direct estimation of coefficients f and b by maximizing the likelihood resulting
from (2) would lead to highly variable and wiggled estimates for f(x). To achieve
smoothness a penalty is introduced leading to the penalized likelihood

I(B;b;7) = —X(Y — XB — Zb)' (Y — XB — Zb) — 1b" Db/ (3)
with A as smoothing parameter and ¥ =(y1,..., y,)", X=(x1,...,x,)" and analogously
Z=(z1,...,2,)". Matrix Dy is a K x K dimensional penalty matrix which for reasons

to become clear later is assumed to be symmetrical and invertible. Differentiating (3)
with respect to B and b leads to the estimating equations:

B=X"X)"'X"(Y - Zb), (4)

b=(Z"Z + Dx/))"'Z"(Y — XP). (5)

Parameter / in (3) plays the role of a smoothing parameter. Letting /4 tend to infin-
ity leads to standard maximum likelihood estimates while A — 0 implies b — 0 so
that f(x) = x"p results as parametric fit. A reasonable choice for A is obtained by
minimizing the Mean-Squared Error (MSE). We therefore assume that covariates x;
have compact support so that Fisher information matrices are of order O(n). This
means for instance that matrix Fyy := n(Z'Z—-Z"X(X"X)"'XTZ)~! has order O(1).
Similar to the results provided in Wand (1999) we get the optimal MSE smoothing
parameter

bTDKFZXDKb + 3(7? tr(szDKFZXDK)/I’l

-2
o2 tt(Fzx Dy ) +00™) (6)

JMSE =
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with tr(-) denoting the trace of a matrix. A short sketch of this statement is provided in
the appendix. The optimal MSE smoothing parameter depends on both, the unknown
but fixed coefficient b and matrix Fzy. It is also worth noting that for ¢, > 0, Ausg
has order O(1).

2.1.1. Cp estimate
An asymptotically unbiased estimate for the optimal MSE smoothing parameter is
obtained, for instance, from the Cp criterion (see Mallows, 1973)

Cep(A)=(y — XB— Zb)'(y — XP — Zb) + 257 tr(S)), (7)

where S, is the smoothing matrix defined via S;y = X + Zb, see the appendix for
details. Minimizing (7) provides the smoothing parameter estimate Acp. Straightforward
calculation reveals the asymptotic form

- b"DyF,xDxh

—1
Cp — 0'3 tr(FZXDK) {1 + Op(n )}? (8)

so that icp results as plug-in estimate of (6). For practical purposes form (8) is of
little use unless the sample size is very large. Therefore a grid search to minimize (7)
should be preferred.

2.2. REML estimate

The penalized likelihood (3) resembles the likelihood in the Linear Mixed Model
b ~N(0,02D¢"), Y|b~N(XB+ Zb,d’L,). 9)
Considering b as random effect we can marginalize (9) and get
Y ~N(XB,a2V)) (10)

with ¥V, =I,+.ZD;'Z" and /. =0} /c2. Model (10) is well established (see e.g. Searle
et al., 1992) and the best linear unbiased predictor for b is given by (5). It is classical
theory that (4) gives to the maximum likelihood estimate for B and simple algebra
leads to the form

f=X"v ' X))\ XTV Y. (11)

In model (10) the smoothing parameter / relates to the a priori variance of b. This
can be estimated by maximizing the REML likelihood (see Harville, 1977)

(Y - X"V, (Y - XB)

= —log|V;| — log| X"V ' X|. (12)

IReML(B; 4) =

Differentiating (12) with respect to /4 and inserting estimates for f provides the REML
estimate (see the appendix for details)

b"Db/c? + tr(Fx Dg/n)

e +0(n7?). (13)

;LREML =
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In general, REML estimation takes the estimation of B into account which is mirrored
in the latter component in (12) and likewise in the second component in the numerator
in (13). If instead simple maximum likelihood estimation of A is pursued the second
component of the numerator of (13) is omitted.

3. Asymptotic comparison of smoothing parameter selectors
3.1. Mixed model

We will now compare the two smoothing parameter selectors }:REML and Aysg. The
conceptional difference between the two approaches is obvious. For the REML estimate
we assume the Linear Mixed Model (9) to hold, in particular coefficient vector b is
considered as random. In contrast for MSE smoothing parameter selection we take b as
fixed but unknown. This means we assume a model which consists of the second part
in (9) only, that is we condition on A. The following theorem illuminates the behavior
of the smoothing parameter estimates if the Linear Mixed Model (9) holds and b is
random.

Theorem. Assuming x; to have compact support and considering model (9) as true
model we get asymptotically

K
P(JremL > Ause) = P (Z WA > o) +0(n™h, (14)

k=1

where 23, k=1,...,K are independent Chi squared distributed variables with 1 degree
of freedom and v, = 1/K — pi/ Zle o1, where py are the eigenvalues of FzxDy.

The proof of the theorem is provided in the appendix. In principle P(Zf: i x 2>0)
can be calculated using the ideas of Davies (1980), even though nowadays simple nu-
merical simulation techniques appear more natural. The result gives the asymptotic
probability that the REML estimate undersmoothes. In standard scenarios this proba-
bility will be larger than 0.5. For instance for truncated polynomials taking Dgx = Ix
the eigenvalues of F,y are skewly distributed so that Zle (1K — px/ >, p1)* <O.
This in turn implies P(>", 27 > 0) > 0.5. The simulation study below illuminates
this point in more depth.

3.1.1. Simulation study

We run a small simulation study to visualize the above result. A more comprehensive
study focusing on small sample properties is given in the next section. We draw n=250
and 750 data points from the model y; = (1,x;)B + zb + & with B =0 for simplicity,
and x; as equidistant points on [0,1]. Basis z is built from K = 30 truncated linear
lines with Dg = Iy (as has been suggested as penalty matrix for this basis by Ruppert
and Carroll, 2000). Components b are drawn independently from a standard normal
distribution while & ~ N(0,¢?) with ¢,=0.2. Smoothing parameter estimates are found
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Fig. 1. Degrees of freedom df(Zysg) plotted against df(iREML) for n=250 (upper plot) and n="750 (middle
plot). Coefficients v (bottom plot), indistinguishable for n =250 and 750.

Table 1
Empirical and asymptotic probability for undersmoothing

P(/AREML > AMSE)

n =250 n =750
Empirical 50.4 53.0
Asymptotic 50.9 54.1

based on a 50 dimensional grid search. Note that Aysg is calculated conditional on b,
so that by simulating b it is random.

Fig. 1 shows the results based on 300 simulations. Instead of plotting the actual
values of 4, which are hard to interpret, we plot the corresponding degrees of freedom,
that is df(1) =tr(:S;). The left plot is for n =250, the middle plot for n =750 (points
have been jittered for better visual impression). The scatterplots of df ():REML) against
df(Amsg) show a reasonable amount of correlation. We are however interested in the
proportion of points lying above the diagonal. This is summarized in Table 1 (with
ch01ces AMSE = )REML due to the grid search divided uniformly on the two groups
iREML < Amse and )REML > JMsE, respectively). As can be seen the REML estimate is
undersmoothing as stated in the theorem, even though the effect is weak but increases
with growing sample size. To complete the picture we also calculate the asymptotic
distribution based on (14) by simulating Zle v 3. Coeflicients v, are shown in
the right plot of Fig. 1 and the corresponding simulated probabilities are included in
Table 1. The simulations clearly support the theoretical findings.

3.2. Smoothing model

The result above is derived under the assumption of a Linear Mixed Model, that is
coefficient vector b is assumed to be normally distributed. A more realistic scenario for
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smoothing is however to consider b as fixed but unknown. This means we assume f(x)
to be approximated by X + Zb, where coeflicients  and b are unknown but fixed.
The optimal MSE smoothing parameter can then be estimated using the Cp criterion
(7) and from (8) we get the asymptotic relationship

A N 1 . A
JREML — Acp = p b'(Dy/K — DxFzx Dy /tr(FzxDk))b{1 + Op(n")}.

For simplicity we set Dx = Ix subsequently and let as above p; be the eigenvalues of
F; x corresponding to the eigenvectoArs w, k=1,...,K This yields U =(uy,...,ux) as
resulting eigenbasis and for ¢ = UTh we get the form

JREML — Acp = % é' (IK/K - diag(pk)/z Pl) é{1+0y(n~ M} (15)
e 7

Note that estimate b is asymptotically N(b, 62 Fzx/n) distributed assuming 2=0(1) (see
also (29) in the appendix). Accordingly we get asymptotically é ~ N(¢, o2diag(px )/n),
with ¢ = UTb, so that the quadratic form (15) allows for the approximation

5 5 1 &
JREML — Acp ~ o ; Wi s (16)
with %’iék as noncentral Chi-squared variables and y; = p;/K — p?/ Yo pnk=1,... K.
The noncentrality parameters J; result from the fact that b is assumed to be fixed and
not necessarily zero. Apparently, if b =0 the noncentrality vanishes and one obtains a
behavior similar to (14) in the above theorem. Considering the noncentrality in more
depth reveals the bias

. . L (Yt Do cibx
E(/ - )( k ke ok CEPT ) 4 o(nTh, 17)
(AREML — Acp p K S, ok ) (
where ¢=(c,... ,cx)'. In applications this bias will be typically positive meaning that

Aremp 18 biased toward undersmoothing. To demonstrate this point we consider the
transformed basis Zy U, where Zy = (I — X(X"X)"'X")Z. Note that Zyb = Zy Uc,
so that ¢ results as the coefficient vector for the transformed basis Zy U. The columns of
the transformed basis matrix relate to the eigenvalues p; such that the larger eigenvalue
pr the more complex is the basis function given by the kth column of Zy U, k=1,...,K.
Using a 30 dimensional basis built from truncated linear lines we show in Fig. 2 for two
different underlying functions (see plots in left column) the corresponding coefficient ¢
(plots in middle column) in decreasing order of the eigenvalues. Bias (17) is mirrored
in the right column where we show c7/K plotted against cjpi/ >, pi. All points lie
below the diagonal which means that quantity (17) is positive. Consequently, the REML
estimate is asymptotically biased and will undersmooth. Such behavior can be observed
as long as the true underlying function can be well approximated by basis functions
in Zy U corresponding to small eigenvalues. These are the less-structured functions. In
other words, as long as matrix Z is chosen generously enough one is faced with a bias
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Fig. 2. Coeflicients ¢; (middle column) for different functions (left column) with a typical sample of size
n = 750. The right column shows ci/K plotted against C;%Pk/zk Ok-

leading to undersmoothing of AAREML. One should keep in mind that this statement is
again formulated in an asymptotic sense and small sample behavior can look differently
as the next section will show.

3.2.1. Simulation study

We run a simulation study to investigate the large sample performance in practice.
The study will be continued in the next section using a small and moderate sample
size. We simulate data from the two functions shown in Fig. 2. The first is f(x) =
1.5¢{(x —0.35)/0.15} — ¢p{(x — 0.8)/0.04} with ¢(-) as standard normal density (upper
row in Fig. 2) and the second is f,(x)=0.5sin(27x) (bottom row). For fitting we use a
K =30 dimensional truncated linear basis. We draw n =750 observations and calculate
JremL and )tcp using a 50 dimensional grid search. The corresponding estimated degrees
of freedom based on 300 simulations are shown in Fig. 3 in the right hand column. The
dotted vertical and horizontal line indicate the optimal MSE choice. The tendency of
undersmoothing for Aggmp is obvious, in particular for the second example. It appears
however that for small sample sizes (two right hand columns) the effect looks different
for the first function. An explanation for this phenomena will be given in the next
section.
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Fig. 3. Selected degrees of freedom df (/":Cp) plotted against df (iREML) for different sample sizes. Upper row
is for function fj(x), bottom row for f,(x). Vertical and horizontal lines show optimal MSE choice.

3.2.2. Variance R .
It can also be observed from the simulation that Ac, is more variable than Jrgmr.
This can also be shown asymptotically since

202 -
Var(AremL) = Kfzb Z P/Zp
k=1

Var(lep) = —x—— D _ Pis
(Zle P o
which easily proves

Var(icy) > Var(Jrem)-

4. Finite sample comparison

We will now investigate the rate of convergence in more depth. The results so far
are derived up to an asymptotic correction of order O(n~'). It is however well known
that asymptotic convergence for smoothing parameter selection criteria may be slow in
practice (see Hardle et al., 1988) and it seems therefore worthwhile to explore small
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sample properties as well. To do so we first show that the Cp criterion as well as the
REML criterion can be comprehended as a penalty concept, where the goodness of fit
is penalized by the complexity of the model. This means we write both criteria in the
form

C(M)=(Y — )Y — f) + D() + const (18)

with f=X p+Zb and const collecting all components not depending on . The function
D(A) can be comprehended as a measure for complexity of the model. For Ac, we get
with (7)

Dcp(4) = 202 tr(S;) = 202 tr(F; 4 F7x.;) + const
with
Frx;=n(Z'Z + Dx;) - Z"X(X'X)"'X'Z)~".
For the REML estimate a decomposition like (18) is less obvious. Using (24) and (25)

in the appendix we can however rewrite Cremp(4) = faf IREML(ﬁ,i) to
Crem(2) = (Y = XB) V(Y — XB) + o?log|V;| + a2 log| XV, ' X|
= (Y —f)'(Y = f) + Drom(2) (19)
with stochastic complexity
. b"Dgh )
D (1) =~ + K log(2) — log| Fz.1|. (20)

For simplicity of investigation we again assume Dg = Ix. Denoting as above with pj
the kth eigenvalue of Fzx we find pi{l — pix/(px + An)} as eigenvalue of Fzy . This
allows us to rewrite the complexities to

Dcy(2) =207 > (4nf(pi + /n)), 1)
k

X ¢'é
Dreni(2) = ==+ ) _log(pe + n) (22)
’ k

with é=UTh. The objective is now to compare (21) with (22). A conspicuous property
of Dremr(4) is that it is non-monotonic. This non-monotonicity implies that small
values of A achieve a large complexity and hence are not selected by the REML
criteria. This in fact mirrors the bias towards undersmoothing as the simulation study
below will show. Moreover Dremy(4) is stochastic while Dysg(4) is deterministic. We
find asymptotically

2
éle ~N (diag(l — pel(pi+ im)e, 2= diag{pi(1 = pi/(px + in))z}) L@

Note that in (23) we explicitly include terms of order O(n~!) which have been omitted
in the previous section. With (23) we can write the stochastic component in Drgmp(4)
as a weighted sum of non-central Chi-squared distributed variables. This means we
get é'é=3%", v%%iék/n where vy = 0,\/pi(1 — pi/(pi + /n)) and %l%,rh as noncentral
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Fig. 4. Complexity measure Drpmrp (4) with pointwise confidence intervals (solid lines) and Dysg(4) (dotted
lines). Upper row is for function f(x), bottom row for f,(x).

Chi-squared variables, i.e. 2’ ,% 5 =z} with z; ~ N(g, 1). The non-centrality parameters
are independent of A and defined through y = \/nc/(0,+/pr). Considering the com-
plexity in more depth we observe that only components u;, k=1,...,K, depend on the
unknown underlying function and hence small sample behavior of the REML estimate
is determined by u; exclusively.

4.1. Simulation

We extend the simulation study from the previous section but use small sample
sizes of order n = 150 and 300. In Fig. 3, we show the resulting estimated degrees
of freedom for the functions seen in Fig. 2 (left column). It appears that there is
clear undersmoothing taking place, even for small samples for the sinus shape function
f2(x) (bottom row). However for the first function f(x) for small n the effect is
vice versa and iREML tends to oversmooth. We explore the different behavior for the
two functions by plotting the complexity measures D(A). In Fig. 4, we plot Drgmi(4)
and Dysg(4) for the three different sample sizes. Additionally we include a plot for a
very large sample size n=10.000. For Drgmp(4) we include pointwise 95% confidence
intervals based on (23). There are various things noticeable from these plots. First and
most apparent Dremp(4) is not monotonic. This means in particular that small values
of A exhibit a large complexity when measured with Drgpp(4) and hence the routine
tends to leave small values of 4 unselected. The U shape of Dremi(4) also contributes
to the low variance of Argmr, since small as well as large values of 4 are strongly
penalized.

From Fig. 4 we also get insight in the different small sample behavior. Considering
Dremi(4) for f1(x) for sample size n = 150 (upper left plot) we see that Drgmp(4)
and Dysg(/4) have a rather similar shape and in fact Drgmp(4) shows a larger slope
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Fig. 5. Selected degrees of freedom for different values of K and n. Upper four plots show results for
function fj(x), lower 4 plots are for function f5(x).

so that small values of 4 are preferred. Accordingly )tREML tends to oversmooth as can
be seen in Fig. 3 upper left plot. If n increases however the U shape of Dremw(4)
becomes dominant and Agrgmp starts undersmoothing. Finally, the minimum of the U
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shape of Drgmi(4) is larger than the mean of ):MSE which expresses the general bias
derived in (17).

We extend the simulation to explore the effect of the choice of K. For sample sizes
n=150 and 750 we build matrix Z from truncated linear lines (x — t;)y, k=1,...,K,
with 7, equidistant points on [0, 1]. We choose K =15 and 60 and run for each setting
150 simulations. The results are shown in Fig. 5. For function f(x) (upper 4 plots) we
observe the same behavior for the larger basis with K =60 as in Fig. 3. For K =15 the
basis seems to be too small so that even for n =750 the REML estimate oversmooths.
For function f,(x) undersmoothing of the REML estimate is evident for all settings.

Finally we run some simulations with ¢? being estimated by ¢ = (Y — f )t
(Y — f)/(N —df), with df as degree of freedom calculated from the trace of the
smoothing matrix. Except of an increased variability of the smoothing parameter esti-
mates the results were the same as those seen in Fig. 3. For space reasons we therefore
do not include the resulting plots here.

5. Discussion

In this paper, we compared smoothing parameter selection for P-spline smoothing
based on Mean-Squared Error minimization and REML estimation. We discussed dif-
ferent scenarios and showed that the REML estimate has the tendency to undersmooth,
i.e. it chooses a too complex model. For small samples this effect can be vice versa
depending on the underlying function. The asymptotic result is in line with standard
spline smoothing, but the asymptotic scenario is different. While for standard spline fit-
ting the basis grows with the sample size for P-spline smoothing the dimension of the
basis is kept fixed. There has been little discussion in the P-spline literature whether K
should be fixed independently of n and kept fixed even if n increases. Ruppert (2002)
suggests a data based choice of K but also shows that K depends only very little
on n.

The problem tackled in this paper was on global smoothing parameter selection. If
the function fitted has in fact varying complexity over x a local choice of the smoothing
parameter might be more appropriate. This has been suggested in Ruppert and Carroll
(2000).

Finally, in concordance with findings in classical spline smoothing the REML esti-
mate shows a reduced variability compared to the Cp alternative. This can be explained
asymptotically as well for small samples by the functional form of the criteria.

Appendix A. Technical details

Before deriving asymptotic results we point out the following relationship which is
used throughout the paper. Simple matrix algebra shows that

V(Y -Xp)=Y - X Zb (A.1)



66 G. Kauermann | Journal of Statistical Planning and Inference 127 (2005) 53—69

with b as defined in (5). Moreover we get again with simple matrix algebra
Z"(Y - Xp— Zb)
=Z"(Y - XP)—-Z"Z(Z"Z + Dx/)'Z"(Y — XP)
{1 -Z"Z(Z"Z + D)) "} Z"(Y — XP)
=Dxb/). (A2)

A.1. MSE smoothing parameter

We assume the conditional model shown in the second component of (9) with b
unknown but fixed. Covariate x is assumed to have compact support with density
bounded away from zero. Denoting W = (X, Z) we postulate that Fjy =n(WTW)~! is
a matrix of order O(1). The estimate f, = {f(xl ),...J}(Xn)}T is obtained by f =S, Y
with

S, =W{F,' +D/(n)}"'WT

as smoothing matrix, where D as block diagonal matrix diag(0,, Dy ), where 0, is a
matrix of zeros with p as number of columns in X. Subsequently we take advantage
of expansions of the type

1
— FyDFy +

) - 1
{Fp;l _’_D/(/Lfl)} 1 :FW — T (i )2 FwDFwDFW + - (A3)
This allows for the bias B=FE (f )—X ﬂ — Zb the approximation
B'B = {}2 b"DxF;xDxb — —— bTDKFZXFZXDKb} {I+0(m "}

and for the variance we get the decomposition

tr {Var(f)} e {( PHK)— = tr(FZXDK) + ——— tr(Fyx D Fr D) + - }

3
(4n)~?
Differentiating MSE(4) = B'B + tr{Var(f )} leads to optimal MSE estimate given
in (6).

A.2. CP estimate

Using approximation arguments as above it is easy to see that

0 1 2
tI'(S ) = tr(FZ)(D[() 13 > tr(FZ)(D[(FZ)(D[() + -
Moreover stralghtforward calculatlon shows
=7 (Y -HNY —f)=—— bTDKFZXDKb Rr bTDKFZXDKFZXDKb +-

Employlng this to set the derlvatlve of (7) to zero directly proves (8).



G. Kauermann| Journal of Statistical Planning and Inference 127 (2005) 53—69 67
A.3. REML estimate

Differentiation of (12) with respect to 4 yields

OlremL(B, 2)
oA

(Y- XB)'V'ZD'ZTV (Y — XP)
o

(A4)

—tu(V;'ZD'ZYY + o {(Z"V ' X)XV X)XV Z)). (AS)
Replacing B in (A.4) by its estimate (4) allows to simplify (A.4) to bTDxb//2. More-

over, simple matrix manipulation similar to (A.3) provides to expand (A.5) which
gives the leading components —K//i+ tr(FzyDx)/(2*n). This in turn proves (13).

A.4. Comparison

We assume now that model (9) holds. Considering estimate b = b, conditional on
b provides with simple asymptotic arguments

L 1 _ _
b,|bN {(IK - FzxDi)b 4+ O(n™?), 6 Fzx/n + O(n 2)} , (A.6)
so that with (9) the joint probability results as
b 0 IDZ! D' — Fyx/n
AN 62 £ . —N(0,X,).
b 0 D" — Fyx/n  ADg' — Fx/n

Solving the REML equation (A.4) and (A.5) up to the second asymptotic order and
defining z, = 62(/remL — AMsE) gives

_ DgFyxDg 0
. tr(F,x D b
= gy | PO )+ o/m
0 Dy b

K — tr(szDK)/n
R b
=:(b",b"4 <[;> + 6/n,

where 0 = tr(FZXDK)/(ogK) -3 tr(FZXDKFZXDK)/(O-g tr(FZXDK)). The focus is now
to calculate P(z, < 0). We tackle this problem using an Edgeworth expansion (see
e.g. McCullagh, 1987, pp. 147, 148) by approximating the distribution of z, by z, =
lim,,_s oo z,. Since

DxF;xDy  Dg
=T (- 2KEzxDr D
- ( tr(Fzx D) * K)
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we get with Imhof (1961)

K
Zeo =03 3 (1K = pe/> p) 2} (A7)
k=1 !
with 27 as independent Chi-squared distributed variable with 1 degree of freedom and
pr as eigenvalues of FzyDg. Analogously we find z, = Ziil p(")kgl%,ék + 0/n where
Z'r.s, are now noncentral independent Chi-squared variables with J; as noncentrality
parameter and p(,y as characteristic roots of AX,. It is easy to see that pg, =0
for K of the roots while the remaining K roots fulfill pi,x = px{l + O(n~")} after
appropriate reordering. Moreover we find

E(zy) — E(zo0) = 0/n (A.8)

and analogously differences in higher-order cumulants of z, and z., are of negligible
asymptotic order. This allows to write
h(0)o
“Kn
where A(-) denotes the density of z.,. With (A.7) we finally obtain (14).

P(zy < 0)=P(z0o < 0) — +0(n?),
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