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Smoothing Spline ModelsWith Correlated Random ErrorsYuedong Wang yDepartment of Biostatistics, University of Michigan,Ann Arbor, Michigan 48109, U.S.A.August 30, 1996AbstractSpline smoothing is a popular method of estimating the functions in a nonpara-metric regression model. Its performance greatly depends on the choice of smoothingparameters. Many methods of selecting smoothing parameters such as CV, GCV, UBRand GML are developed under the assumption of independent observations. They failbadly when data are correlated. In this paper, we assume observations are correlatedand the correlation matrix depends on a parsimonious set of parameters. We extendthe GML, GCV and UBR methods to estimate the smoothing parameters and the corre-lation parameters simultaneously. We also connect a smoothing spline model with threemixed-e�ects models. These connections show that the smoothing spline estimates eval-uated at design points are BLUP estimates and the GML estimates of the smoothingparameters and the correlation parameters are REML estimates. These connectionsalso suggest a way to �t a spline model with correlated errors using the existing SASprocedure proc mixed. We illustrate our methods with applications to two time seriesdata sets and a spatial data set. Simulations are conducted to evaluate and compare theperformance of the GML, GCV, UBR methods and the method proposed in Diggle andHutchinson (1989). The GML method is recommended since it is stable and works wellin all simulations. It performs better than other methods, especially when the samplesize is not large.Keywords: Best linear unbiased prediction; Generalized cross-validation; Gener-alized maximum likelihood; Unbiased risk; Mixed-e�ects model; Restricted maximumlikelihood; Smoothing parameters; Smoothing spline; Smoothing spline ANOVA.1 IntroductionIn this paper we consider the general smoothing spline models in Wahba (1990). For anarbitrary index set T (e.g., T = f1; � � � ; Ng, T = [0; 1] or T = Ed, where Ed is the EuclideanyE-mail: yuedong@umich.edu. 1



d-space), let H be a reproducing kernel Hilbert space (r.k.h.s.) of real-valued functions onT . See Aronszajn (1950) and Wahba (1990) for details on r.k.h.s. Assume that observationsyi are generated by yi = Lif + �i; i = 1; � � � ; n; (1)where f 2 HR, the �i's are zero mean random errors and the Li's are bounded linear func-tionals on HR. Interesting examples of bounded linear functionals on appropriate spaces areLif = f(ti), Lif = aif(ti � bi), RT wi(t)f(t)dt and Lif = f 0(ti).Spline smoothing provides a powerful tool for estimating f which does not require spec-ifying a parametric form for f . There is a vast literature on this topic (Eubank 1988, Greenand Silverman 1994, Hastie and Tibshirani 1990, Wahba 1990). Almost all of this literatureis based on the assumption that the random errors are independent. Often in practice ob-servations are correlated. Examples are time series data, spatial data and clustered data. Itis well known that correlation has a great e�ect on the selection of smoothing parameters,which are critical to the performance of smoothing spline estimates. Popular methods forselecting smoothing parameters such as cross-validation (CV), generalized cross-validation(GCV), generalized maximum likelihood (GML) and unbiased risk (UBR) fail badly whendata are positively correlated (see Altman (1990), Diggle and Hutchinson (1989)). To showhow standard smoothing parameter selection methods are a�ected by correlation of the er-ror, we simulated data from the model yi = sin 2�i=100 + �i, i = 1; � � � ; 100, where �'s aregenerated by a �rst-order autoregressive process with mean zero, standard deviation 0:1and �rst-order correlation 0:55. Figure 1 shows one \typical" (i.e., the �rst replicate of thesimulation) set of simulated data, the true function and three estimates with smoothing pa-rameters chosen by standard GML, GCV and UBR methods respectively. These estimatesare wiggly which indicates that the estimated smoothing parameters are too small.
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Figure 1: Plots of the true function (dotted lines), observations (dots) and estimates (solidlines) with smoothing parameters chosen by GML (left), GCV (middle) and UBR (right).Diggle and Hutchinson (1989), Hurvich and Zeger (1990) and Kohn, Ansley and Wong(1992) considered the special case of spline smoothing for time series data. Several authors2



(Altman 1990, Hart and Wehrly 1986, Hart 1991, Hart 1994, Herrmann, Gasser and Kneip1992, Raz, Turetsky and Fein 1989) studied the e�ects of correlation on the selection ofsmoothing parameters and developed various methods for kernel regression. Almost all ofthese methods are developed for time series only and some even requires design points equallyspaced.In this paper we assume that the random errors in (1) are correlated. We extend theusual GML, GCV and UBR methods to these models. The general smoothing spline modelson arbitrary domains and smoothing spline ANOVAmodels are used to present our methods.Therefore these methods can be applied not only to time series data, but also to spatial,spatial-temporal and longitudinal data (Wang 1996). We do not assume any speci�c er-ror structure. Instead, we assume the correlation matrix depends on a parsimonious set ofparameters. We propose to estimate the smoothing and the correlation parameters simulta-neously. We also connect a smoothing spline model with three linear mixed-e�ects models.With these connections, one can easily calculate the smoothing spline estimates using theSAS procedure proc mixed.In section 2, based on a Bayesian model, we propose an extension of the GML method toestimate the smoothing parameters and the correlation parameters simultaneously. In section3, we provide connections between the smoothing spline models and the mixed-e�ects modelsthat give another motivation for the GML method and suggest a way to �t a smoothingspline model using the existing SAS procedure. In section 4, we introduce some extensionsof the GCV method and the UBR method. In section 5, these methods are extended to �tmultivariate functions modeled by smoothing spline ANOVA decompositions. In section 6,we �t data from two time series and an environmental model involving spatial data using theGML method. In section 7, extensive simulations are conducted to evaluate and comparethe �nite sample performance of the GML, GCV, UBR methods and the method proposedin Diggle and Hutchinson (1989).2 Generalized Maximum Likelihood EstimatesThe r.k.h.s. H in section 1 is a prechosen model space. See Wahba (1990) for a discussionof di�erent spaces for di�erent index sets. Suppose H can be decomposed to H = H0 �H1,where H0 is a �nite dimensional space containing terms which are not going to be penalized.Denote M = dim(H0). Let R1 be the reproducing kernel (r.k.) of H1. Suppose observationsare generated by (1) and � = (�1; � � � ; �n)T � N(0; �2W�1): (2)The penalized likelihood estimate of f is the solution tominf2H � 1n (y � f)TW (y � f ) + �kP1fk2� ; (3)where y = (y1; � � � ; yn)T and f = (L1f; � � � ; Lnf)T . The �rst part in (3) is proportionalto the negative log likelihood and it measures goodness-of-�t. In the second part, P1 isthe orthogonal projection of f onto H1 in H. Thus the second part is a penalty to the3



departure of f from the space H0. Usually it is a penalty to the roughness of f . Forexample, kP1fk2 = R 10 (f (M))2dt when T = [0; 1]. � is a smoothing parameter. It controlsthe trade-o� between goodness-of-�t and the departure of the estimate from the space H0.Let �1; � � � ; �M be a basis for H0 and set �i(t) = Li(�)R1(t; �). Kimeldorf and Wahba(1971) showed that the solution to (3) has the formf̂ = MX�=1 d��� + nXi=1 ci�i : (4)Let Tn�M = fLi��gni=1M�=1 and � = f< �i; �j >g. For �xed � and W , it is easy to check thatc = (c1; � � � ; cn)T and d = (d1; � � � ; dM )T are solutions toT TW�c+ T TWTd = T TWy;(�W� + n��)c+ �WTd = �Wy: (5)(5) is equivalent to T TWT T TW�WT �W + n�I ! d�c ! =  T TWy�Wy ! : (6)The system (6) is de�nite when T is of full column rank, which we assume to be true in thispaper. Thus f̂ = (L1f̂ ; � � � ; Lnf̂)T = Td+ �c is always unique. In fact the solution to (3)exists and is unique (Gu and Qiu (1993)). We only need a solution to (5). It is easy to checkthat a solution to (� + n�W�1)c+ Td = y; (7)T Tc = 0; (8)is also a solution to (5). Thus we need to solve (7) and (8) for c and d. LetT = (Q1 Q2) R0 !be the QR decomposition of T . Then it is easy to check thatc = Q2(QT2 (� + n�W�1)Q2)�1QT2 y;Rd = QT1 (y � (� + n�W�1)c): (9)Obviously, f̂ is a linear function of y. Suppose that f̂ = Ay, where A is the \hat"matrix. From (7) and f̂ = Td+ �c we have(I �A)y = y � f̂ = n�W�1c = n�W�1Q2(QT2 (� + n�W�1)Q2)�1QT2 yfor all y. Thus I �A = n�W�1Q2(QT2 (� + n�W�1)Q2)�1QT2 : (10)4



Note that A is not symmetric, which is di�erent from the independent case.Consider the following Bayesian model. Let a prior for f beF (t) = MX�=1 ����(t) + b1=2X(t); t 2 T ; (11)where � = (�1; � � � ; �M)T � N(0; aI), a and b are positive constants. X(t); t 2 T is a zeromean Gaussian stochastic process independent of � with covariance EX(s)X(t) = R1(s; t).Suppose observations are generated byyi = LiF + �i; i = 1; � � � ; n;where � = (�1; � � � ; �n)T � N(0; �2W�1). This Bayesian model is the same as the one de-scribed in Wahba (1990) except that the errors are correlated. Thus, following arguments inWahba (1990), one may show that with � = �2=nb, for each �xed t,lima!1E(F (t)jy) = f̂(t); (12)lima!1Cov(F jy) = �2AW�1; (13)where F = (L1F; � � � ; LnF )T .The marginal distribution of y is N(0; b(�TT T + � + n�W�1)), where � = a=b. Let zw ! =  QT21p�T T !y:Then z = QT2 y � N(0; bQT2 (� + n�W�1)Q2);Cov(z;w) = bp�QT2 (�TT T + �+ n�W�1)T �! 0; �!1;Var(w) = b�T T (�TT T + �+ n�W�1)T �! b(T TT )(T TT ); �!1:In the following of this paper we assume that the covariance matrix W�1 depends onsome correlation parameters � . Interesting examples of covariance structures are �rst-orderautoregressive for time series, compound symmetry or unstructured for repeated measures,and exponential for spatial data (Jennrich and Schluchter 1986, SAS Institute 1992). LetB(�; � ) = �+n�W�1, where the dependence on parameters � and � is expressed explicitly.As argued in Wahba (1985), the distribution of w is independent of both � and � . Thereforethe maximum likelihood estimates of � and � should be based on the marginal distributionof z alone. Accordingly, the generalized maximum likelihood (GML) estimates of � and �are maximizers of the log likelihood based on z:l1(�; � ; bjz) = �12 log jbQ02B(�; � )Q2j � 12bz0(Q02B(�; � )Q2)�1z + C1;5



whereC1 is a constant. Maximizing l1 with respect to b, we have b̂ = z0(Q02B(�; � )Q2)�1z=(n�M). Then the GML estimates of � and � are maximizers ofl2(�; � jb̂) = �12 log jQ02B(�; � )Q2j � n �M2 log b̂+ C2= �n�M2 log z0(Q02B(�; � )Q2)�1z[det(Q02B(�; � )Q2)�1] 1n�M + C2;where C2 is another constant. Equivalently the GML estimates of � and � are the minimizersof M(�; � ) = z0(Q02B(�; � )Q2)�1z[det(Q02B(�; � )Q2)�1] 1n�M (14)= y0W (I �A)y[det+(W (I �A))] 1n�M ;where det+ is the product of the nonzero eigenvalues. An obvious estimate of the variance�2 is �̂2 = n�̂z0(Q02B(�; � )Q2)�1zn�M = y 0W (I �A)yn�M : (15)3 Connections Between Smoothing SplineModels andMixed-E�ects ModelsIn his contribution to the discussion of Robinson (1991), Speed noted the connection betweena smoothing spline and a mixed-e�ects model for the special case that T = [0; 1] and � isinvertible. In this section, we give more details on this connection for the general smoothingspline models. It provides another motivation for using GML to estimate the smoothing pa-rameter and correlation parameters simultaneously. It also suggests a way to �t a smoothingspline model using the SAS procedure proc mixed.There are three possible ways to connect a smoothing spline to a mixed-e�ects model.First, the following mixed-e�ects model was considered by Speed:y = Td+ u+ �; (16)where d is �xed, u is random and distributed as u � N(0; �2�=n�). � � N(0; �2W�1). Notethat � may or may not be invertible. Write �=n� = (I)(�)(I=n�), where I is the identitymatrix. It is easy to check that the generalized version of the normal equations (equation(3.3) in Harville (1976)) is the same as equations (7) and (8) for c and d. The estimate ofu is û = �c. Thus the smoothing spline estimate f̂ = Td + �c = Td + û is a best linearunbiased prediction (BLUP) estimate.Second, consider the following mixed-e�ects model:y = Td+ �u + �; (17)6



where d is �xed, u is random and distributed as N(0; �2�+=n�) with �+ the Moore-Penroseinverse of � and � � N(0; �2W�1). Write �+=n� = (�+)(�)(�+=n�). It is easy to checkthat equation (3.3) in Harville (1976) is the same as equations (7) and (8). The estimate ofu is û = �+�c, and again, the smoothing spline estimate f̂ = Td + �c = Td + �û is aBLUP estimate.Write � = ZZT , where Z is a n � k matrix with k = rank(�). Let V be a n � k matrixsuch that ZTV = Ik�k. Then we have V T�V = Ik�k and ZV T� = �. The third possiblemixed-e�ects model is: y = Td+ Zu+ �; (18)where u � N(0; �2I=n�) and � � N(0; �2W�1). Writing I=n� = (V T )(�)(V=n�), equation(3.3) in Harville (1976) is the same as (7) and (8) for c and d. The estimate for u isû = V T�c. Thus, the smoothing spline estimate f̂ = Td + �c = Td + Zû is a BLUPestimate.The smoothing parameter � depends on the the ratio of two variance components. Letb = �2=n�. Obviously � = 0 i� b = 1 and the �t interpolates the observations. � = 1 i�b = 0 and the �t is in space H0. Thus a hypothesis test on the variance component b = 0 canbe used to test f 2 H0 (see Cox, Koh, Wahba and Yandell (1988)). It is easy to check thatthe variance and covariance formulas in Theorem 3 of Harville (1976) are exactly the sameas the posterior variance and covariance formulas in Wahba, Wang, Gu, Klein and Klein(1995). Thus the covariance matrix of the overall �t f̂ based on the mixed-e�ects modelis the same as (13). This covariance matrix can be used to construct Bayesian con�denceintervals (Wahba (1990)).It is a common practice in mixed-e�ects models to estimate all variance components andcorrelation parameters using the restricted maximum likelihood (REML) method. Sincez are n �M linearly independent contrasts of y, the REML estimates of �, � and b isthe maximizer of the log likelihood based on z. Thus the GML estimates are also REMLestimates.Since a solution to the generalized version of the normal equation is a solution to (5),one can use SAS procedure proc mixed to calculate coe�cients c and d in (4). Note thatthe spline estimate f̂ (t) is de�ned on the domain T , while estimate of a linear mixed-e�ectsmodel is only de�ned on design points. Our ultimate goal is to get a spline estimate and theconnections between a smoothing spline model and mixed-e�ects models are used to achievethis goal. One may choose any one of the three models that is easiest to use with the SASprocedure proc mixed. We will give an example of the SAS program in section 6.4 Extensions of the UBR and GCV MethodsGCV method is well known for its optimal properties (Wahba 1990). UBR method has beensuccessfully used to select smoothing parameters with non-Gaussian data (Gu 1992, Wahbaet al. 1995). In this subsection we describe how to develop analogue of the UBR and GCVmethods that can be used with correlated data. For this purpose, de�ne the weighted mean7



squared errors (WMSE) asTk = 1n(f̂ � f )TW k(f̂ � f ) = 1n jjW k=2(f̂ � f)jj; k = 0; 1; 2: (19)Then, since f̂ = Ay,ETk = 1nfT (I �AT )W k(I �A)f + �2n TrATW kAW�1; k = 0; 1; 2; (20)an unbiased estimate of ETk isUk = 1nyT (I �AT )W k(I �A)y � �2n TrW k�1 + 2�2n TrW k�1A; k = 0; 1; 2: (21)Estimates of � and � which minimize Uk are called unbiased risk estimates. This method isan extension of the UBR method for independent observations and is still called the UBRmethod in this paper. The UBR method needs knowledge or an estimator of �2; one possibleestimator is given in (15).De�ne Vk = 1n jjW k=2(I �A)yjj2[ 1nTr(W k�1(I �A))]2 ; k = 0; 1; 2: (22)If TrW k�1A=TrW k�1 is small, thenEVk � [ 1nfT (I �AT )W k(I �A)f + �2n Tr(I �AT )W k(I �A)W�1][1 + 2TrW k�1A=TrW k�1 + o(1)]=( 1nTrW k�1)2� (ETk + �2n TrW k�1)(1 + o(1))=( 1nTrW k�1)2:Thus V0 is a proxy for ET0 if TrW�1 does not depend on � . V1 is a proxy for ET1. ET2involves both ET2 and TrW . Comparing the GML function (14) with the GCV function(4.3.1) and GML function (4.8.4) in Wahba (1990), it is easy to see that V2 is a directextension of the usual GCV function to the dependent case. Estimates of � and � whichminimize Vk are called the GCV estimates, and the method is still called the GCV methodin this paper.The GCV methods with k = 0 and k = 1 correspond to the direct and indirect methodsin Altman (1990) respectively. The method (b) in Diggle and Hutchinson (1989) used thefunction lnV1 plus a term ln jW�1j. As commented in their paper, it does not penalize thedegree of freedom TrA enough. The method (c) in Diggle and Hutchinson (1989) used thefollowing functionL = n ln yT (I �AT )W (I �A)y + ln jW�1j+ (lnn)TrA: (23)We will call estimates of � and � which minimize L as the L estimates and the method asL method in our simulations in section 7. 8



5 Smoothing Spline ANOVA Models with CorrelatedErrorsIn this section, we extend our methods to �t smoothing spline ANOVAmodels with correlatederrors. Suppose now the index set T = T1 
 � � � 
 Td. The model space is an orthogonaldecomposition of H into more than two components:H = H0 � pX�=1H�; (24)where H0 is a �nite dimensional space with terms which are not going to be penalized. SeeWahba (1990) and Gu and Wahba (1993a) for discussions on how to construct the modelspace H. Suppose we have observations as in (1). A direct generalization of (3) isminf2H 8<: 1n(y � f)TW (y � f ) + � pX�=1 ��1� kP�fk29=; ; (25)where P� is the orthogonal projection in H onto H�. Let �1; � � � ; �M be a basis of H0. Let��i (t) = Li(�)R�(t; �), where R�(t; �) is the r.k. of H�. From Wahba (1990), the solution to(25) is f̂ = MX�=1 d��� + nXi=1 ci( pX�=1 ����i ): (26)c = (c1; � � � ; cn)T and d = (d1; � � � ; dM )T are solutions to (5) with� = pX�=1 ����; (27)where �� = f< ��i ; ��j >g. Gu and Wahba (1993b) established the connection between asmoothing spline ANOVA model and a Bayesian model with independent errors. Extensionof their model to the correlated errors situation is similar to the previous sections; it is isnot repeated here. The GML estimates of the smoothing parameters �=�1; � � � ; �=�p and �are the minimizers of (14) with the matrix � given by (27).Next, we connect a smoothing spline ANOVAmodel with a mixed-e�ectsmodel. Considerthe following mixed-e�ects model:y = Td+ pX�=1u� + � = Td+ Zu+ �; (28)where d is �xed, u� is random and distributed as u� � N(0; �2����=n�), � � N(0; �2W�1),and u�'s and � are mutually independent. Zn�np = (In�n; � � � ; In�n). u = (uT1 ; � � � ;uTp )T .Let D = diag(�1�1; � � � ; �p�p). Then var(u) = �2D=n�. Writing D=n� = (I)(D)(I=n�), itmay be veri�ed that the equation (3.3) in Harville (1976) is T TWT T TWZDDZTWT n�D +DZTWZD ! d� ! =  T TWyDZTWy ! : (29)9



Let c and d be a solution to (5). Since ZDZT = �, it can be shown that d and � = ZTc is asolution to (29) if � is invertible. The estimate of u is û = D� = DZTc. Thus, ����c = û�,the smoothing spline ANOVA estimate of the component in the subspace H�, is a BLUP.Therefore the smoothing spline ANOVA estimates of the main e�ects, the interactions andthe overall function are BLUP's. If � is not invertible, the smoothing spline estimate of theoverall function f̂ = Td+ �c is still a BLUP since it is unique according to (6).Extensions of the GCV and the UBR methods in section 4 for �tting smoothing splineANOVA models are straightforward. The GCV and UBR estimates of the smoothing pa-rameters and the correlation parameters are minimizers of (22) and (21) respectively, withthe matrix � given by (27).6 ApplicationsIn this section we apply our method to �t data from two time series and an environmentalmodel involving spatial data. The analysis here are intend to illustrate our methods anddoes not represent a formal analysis of the data.6.1 Spline Smoothing of Time SeriesConsider the following model:Y (t) = f(t) + Z(t); t 2 [0; 1]; (30)where f is a deterministic mean function and belongs to the r.k.h.s.WM = ff : f (�)absolutely continuous; � = 0; � � � ;M � 1; f (M) 2 L2[0; 1]g;and Z is a stationary error process with mean zero. Suppose we have observations yi at timeti of the form: yi = f(ti) + Z(ti); i = 1; � � � ; n; (31)where � = (Z(t1); � � � ; Z(tn))T � N(0; �2W�1). Note that the ti's are not necessarily equallyspaced. Our goal is to estimate the mean function f .Several authors have studied this problem. Diggle and Hutchinson (1989) consideredthe case when Z(ti) are an autocorrelated sequence. They extended the generalized cross-validation method to estimate the smoothing parameter and the autocorrelation parameterssimultaneously. Kohn et al. (1992) represented a smoothing spline by a state space modeland extended the CV, GCV and GML methods for an autoregressive moving average errorsequence. Altman (1990) and Hart (1991) used kernel regression to estimate the meanfunction with the smoothing parameter estimated from mean squared errors. Hart (1994)used the time-series cross-validation method to estimate the smoothing parameter and theautocorrelation functions simultaneously. Hurvich and Zeger (1990) used a frequency domaincross-validation method to estimate the smoothing parameter.Theoretically, our method can be used for any error structure. We illustrate our approachusing the following two examples which were previously analyzed in the literature.10



We use series A in Box and Jenkins (1976) (p.525) as our �rst example. It was usedby Diggle and Hutchinson (1989) to demonstrate their method. This series has 197 mea-surements of the \uncontrolled" concentration in a continuous chemical process sampledevery two hours. We �t this series with a cubic spline for the deterministic mean function(f 2 W2) and an AR(1) model for errors. GML method is used in all the examples in thissection since it has found to work better than other methods by our simulations in section7. The left plot in Figure 2 shows the data (points), estimate of f under the AR(1) modelfor the errors (solid line) and its 95% Bayesian con�dence intervals. We also plot the esti-mate of f under the independence assumption (dotted line). The estimate of f under theindependence assumption is more wiggly but within the Bayesian con�dence intervals. Ourestimates and con�dence intervals are visually similar to those in Diggle and Hutchinson(1989). The estimates of the �rst-order autoregressive parameter, the smoothing parameter� and the residual variance �2 are 0.305, 0.0000048 and 0.098, respectively.We use the Beveridge data in Anderson (1971) as our second example. It was used byHart (1994). This series contains the yearly Beveridge index of wheat prices in Europe from1500 to 1869. We use a cubic spline for the mean function of the log index and an AR(1)model for errors. The right plot in Figure 2 shows the data (points), estimate of f under theAR(1) model (solid line) and its 95% Bayesian con�dence intervals. The estimate of f underthe independence assumption (dotted line) is more wiggly. The estimates of the �rst-orderautoregressive parameter �, the smoothing parameter � and the residual variance �2 are0.696, 0.0000014 and 0.051, respectively.SAS procedure proc mixed was employed to �t both data sets using the mixed-e�ectsmodel (16). Part of the SAS program used for �tting the chemical data is listed below:proc mixed data=samp absolute convf;model y = s;random col4-col200 / type=lin(1) ldata=ldata;repeated / type=ar(1) sub=intercept;parms (106) (0.3) (0.1);where data samp contains variables y, s with s(i) = i=197 � 0:5, i = 1; � � � ; 197, and col4 tocol200 which are 197 columns of an 197�197 identity matrix. Data ldata contains variablesparm with parm = 1, row which indicates row number, col1 to col197 which are 197 columnsof the matrix �. The covariance matrix of the random-e�ects � is speci�ed by the randomstatement with the new option type=lin in SAS release 6.09 (SAS Institute 1994). Someoptions are taken out to make the program simple. Both programs are available from theauthor.6.2 Spline Smoothing of Spatial DataIn this section we analyze a subset of environmental data based on the Eastern Lakes Surveyin 1984 by the EPA. This data was used in Gu and Wahba (1993a) and Gu and Wahba(1993b). We only use observations on 112 lakes in the southern Blue Ridge mountains area.The data contains water acidity measurements (surface pH), geographic information (latitudeand longitude) and the calcium concentration. Of interest is the dependence of the water11
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Figure 2: Left: chemical concentration. Right: Beveridge index of wheat price. Dots:observations. Solid lines: estimates with smoothing parameters chosen by GML. Dashedlines: 95% Bayesian con�dence intervals. Dotted lines: estimates assuming independenceand smoothing parameters are estimated by GML.acidity on the geographic location and the calcium concentration. Denote t1 2 E1 as thecalcium concentration and t2 = (x1; x2) 2 E2 as the latitude and longitude. A smoothingspline ANOVA model of the formyi = C + f1(t1) + f2(t2) + f12(t1; t2) + �i; i = 1; � � � ; 112; (32)was used in Gu and Wahba (1993a), where the �i's were assumed to be independent. See Guand Wahba (1993a) for details about the data and the model. The independence assumptionmay or may not be valid since measurements of lakes close together may be positivelycorrelated. Thus, for the analysis conducted here we will assume the correlation matrixW�1 has an exponential structure: w�1ij = exp(�dij=�), where dij is the Euclidean distancebetween the geographic locations t2(i) and t2(j). Using model (32) along with the exponentialstructure for the errors covariances, we �t the data using the SAS procedure proc mixed.The estimate of � equals 0:02, which is not signi�cantly di�erent from zero. We also tried to�t the data with a power structure: w�1ij = �2�dij , for the correlation matrix and the estimateof � is also near zero. Thus the independence assumption in this case is appropriate. Theestimates are similar to Gu and Wahba (1993a). Thus they are not presented here.12



7 Simulation ResultsA simulation study is conducted to evaluate and compare the performance of several methodspresented in previous sections. The model considered isyi = sin 2�i=n+ �i; i = 1; � � � ; n; (33)where the �'s are generated by a �rst-order autoregressive process with mean zero, standarddeviation � and �rst-order correlation �. Four di�erent sample sizes n = 50; 100; 200; 400,two di�erent standard deviations � = 0:1; 0:3, and four di�erent correlations� = 0:3; 0:55; 0:74; 0:86 are considered. For n = 400, we only consider the cases that � = 0:1and � = 0:3; 0:86 due to the large CPU time needed. Hence we have 3�2�4+2 = 26 factorsin the design of our simulation experiment. Responses are generated for 100 replicationsof each of these 26 settings. We use the Fortran routine rnor of the Core MathematicsLibrary (Cmlib) from the National Bureau of Standard to generate random numbers in allthe simulations. Cubic splines (m = 2) are used to �t the mean function.First, we compare the performance of various methods for estimating the function and thecorrelation parameter. In previous sections we presented eight di�erent criterion functions:GML(M), GCV(V0,V1,V2), UBR(U0,U1,U2) and Diggle and Hutchinson (1989)'s functions L.In our preliminary simulations with 10 replications, the GCV methods V0 and V1 tended tointerpolate the data, while U0 was a decreasing function of �, and it always estimated � as�1. The UBR method U1 was found to work �ne, but not as well as U2 in terms of WMSE in(19) for all k. Thus we only conducted simulations using functions M , V2, U2 and L. Theyare represented by m, v, u and l in our plots and tables. They are called GML, GCV, UBRand L methods respectively.The comparison results between methods based on di�erent de�nitions of WMSE (k =0; 1; 2 in (19)) are the same. The WMSE for di�erent k are highly correlated. We onlypresent the comparison results based on the WMSE with k = 2 (T2 in (19)).For each of the 100 replications, we calculate f̂ and �̂ using GML, GCV, UBR, L methodsand calculate the WMSE of f̂ . Figure 3 shows the boxplots of WMSE of f̂ for all simulationsexcept for n = 400. Figure 4 and 5 show the average WMSE values of f̂ on log10 scale for� = 0:1 and � = 0:3 respectively. Figure 6 shows the boxplots of �̂ for all simulations exceptfor n = 400. Figure 7 and 8 show the MSE of �̂ (MSE = P100r=1(�̂r � �)2) on log10 scale for� = 0:1 and � = 0:3 respectively.The GCV and L methods interpolate data in several replications when n is small (n =50; 100). There are no interpolation cases when using GML and UBR methods. The numberof replications out of 100 that have a GCV and a L estimate of n�̂ smaller than -14 in log10scale is listed in Table 1. The number decreases with increasing n and decreasing �.The GML method has the smallest or near the smallest WMSE of f̂ and MSE of �̂.GCV tends to interpolate the data when n is small and � is large (Table 1). This problemdiminishes quickly when n becomes large. This agrees with the conclusions in Wahba andWang (1993) where observations were assumed to be independent. The WMSE of f̂ usingGCV converges faster than using GML when the correlation is small (� = 0:3), which agreeswith the theory in Wahba (1985) for independent observations. GCV method estimates �reasonably well, though not as good as the GML method. The UBR method estimates f13



very well, but estimates � poorly. Actually the MSE of �̂ does not decrease as n increases.One possible reason for this is that the WMSE is a loss function measuring the di�erencebetween f̂ and f only and the di�erence between �̂ and � is ignored. A measure of thewhole estimation loss should assess the performance of both f̂ and �̂. The Kullback-Leiblerdiscrepancy may be a more appropriate measure of the whole estimation error. The truevariance �2 was used in simulations involving the UBR method. The L method interpolatesthe data when the sample size is small (Table 1). As n becomes large (n � 200), it has nointerpolation and works as well as the GML method in terms of both f̂ and �̂. We concludethat the GML method works well for all cases in terms of both the estimation of the truefunction and the estimation of the correlation parameter. Its performance is better thanother methods, especially when the sample size is small. This agrees with the conclusions inKohn, Ansley and Tharm (1991) for independent data. Therefore GML is recommended.� = 0:30 � = 0:55 � = 0:74 � = 0:86Method v l v l v l v l� = 0:1n = 50 2 100 3 100 4 100 8 100n = 100 0 1 0 11 0 35 0 62� = 0:3n = 50 2 100 3 100 6 100 8 100n = 100 0 1 0 6 0 27 0 51Table 1: Number of replicates out of 100 total that interpolates. v and l represent GCV andL methods respectively.For n = 100, � = 0:1, and � = 0:55, for each method, we select the 5th, 25th, 50th,75th and 95th best estimates of the mean function ordered by their WMSE values. Figure9 shows these estimates. Again, we can see that the GML method works better.To look at the shape of the functions of M , V , U and L, for n = 100, � = 0:1, and� = 0:55, we show \typical" (i.e., the �rst replicate of the simulation) contour plots of thesefour functions in Figure 10. We can see from these plots that each function has an uniqueminima inside the search region and it is near the true value of �. The L function haslocal minimas at � = �1. M , V and L functions have local maximas around � = �1 andlog10(n�) = 0. All functions have nice bowl shapes near their local minima.Assume the errors in model (33) come from a stationary process with covariance functionCov(�i; �j) = �2�n(ji � jj), where �n(k) is a correlation function depending on n. Manyauthors (Altman 1990, Hart 1991) distinguished two di�erent kinds of special error processes:(a) �n(k) = �(k) and (b) �n(k) = �(k=n). In the �rst case, the error process is constantregardless of how close together the design points become. Under certain conditions, theMSE of a kernel estimate converges to zero as n ! 1 (Altman 1990, Hart 1991). In thesecond case, the error process is a realization of a continuous process. There are no consistentlinear estimators for this case (Hart and Wehrly 1986). Our simulations involves both cases.First, consider � as �xed and let n increase. This corresponds to the �rst case. Figure (4)14
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Figure 11: Plots of mean values of WMSE (Tk) on log10 scale for k = 0, k = 1 and k = 2.The correlation parameters for sample sizes 50, 100, 200 and 400 are 0.3, 0.55, 0.74 and 0.86respectively. Left: � = 0:1. Right: � = 0:3. m, v, u and l represent GML, GCV, UBR andL methods respectively. 23
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 [0; 1], where K is the number of individuals) and spatial-temporal data (T =E2 
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