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Today, we introduce barycentric coordinates as an alternate to using a rigid coordinate
system, and immediately use barycentric coordinates to define de Casteljau’s algorithm in
a pure geometric manner without recourse to analytic geometry. Barycentric coordinates
will be one of the main tools that we will use in the remainder of the course, as they
provide a geometric manner to construct coordinate system and avoid the explicit use of
coordinate systems. The constructions that we use are the basis for affine geometry which
is the geometry of vector spaces, and is the natural generalization of the geometry of the
Euclidean plane without the use of angles and distances.

11.1 Oblique Coordinate Systems

We start with the abstract description of a coordinate system in a plane, and develop our
description of a point in the plane from the vector description of a coordinate system. Recall
a coordinate system (an oblique coordinate system) is given by choosing two intersecting
lines l and m. Let O be the point of intersection, A be a different point on line l than O
and B be a different point on line m than O. The coordinates of a point P in the plane
described by O, A and B are given by letting X be the intersection of a line parallel to m
through P with the line l and Y be the intersection of a line parallel to l through P with the
line m. See diagram below. We then let x be number representing the proportion OX/OA
if X and A are on the same side of O, and we let x = −OX/OA if X and A are on opposite
sides of O (a negative number represents the other side of O than A). Likewise, we define
y through the proportion OY/OB.

In terms of vectors (where a vector is defined as the difference of two points and the ray
from one point to another point, and multiples of a vector are obtained by considering the
line through the two points and constructing a line segment that is a multiple of the original
line segment), we thus have

−−→
OX = x

−→
OA and

−−→
OY = y

−−→
OB. Recalling that two vectors

−−→
PQ

and
−→
RS are equal if a line through P to QS intersects the extended line RS at the point R

(the pair of line segments PQ, RS are opposite sides of a parallelogram and the pair of line
segments PR, QS are opposite sides of a parallelogram), we can write

−−→
OP = x

−→
OA + y

−−→
OB
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Figure 1: Construction of an Oblique Coordinate System

because x
−→
OA =

−−→
OX, y

−−→
OB =

−−→
OY =

−−→
XP ). Writing

−−→
OP = P − O,

−→
OA = A − O, and−−→

OB = B −O, we have
P = O + x

−→
OA + y

−−→
OB

= O + x (A− 0) + y (B − 0)
= (1− x− y)O + xA + y B.

The second description gives us a unique description of every point in the plane defined
by three non-collinear points O, A, B directly in terms of the points rather than through
defining vectors.

We can extend this description of a point in a plane to a point in space by using four
non planar points to define three (linearly independent) vectors with a common base point.
Thus, we can write a point P in space in terms of four non-planar points O, A, B, C as

P = O + x
−→
OA + y

−−→
OB + z

−−→
OC

P = (1− x− y − z) O + xA + y B + z C.

Notice that both the description of a point in a plane or a point in space can be written in
the form

P = α0 P0 + α1 P1 + · · ·+ αn Pn

where {αi} is a sequence of numbers with
∑

i αi = 1 and {Pi} is a sequence of points and
n = 2 or n = 3.

This generalizes further to the space of n-dimensional points En, where En consists of the
space of points that can be represented as n-tuples of real numbers. We are reserving
the notation Rn for the n-dimensional vector space of real numbers. This is a notational
convenience to distinguish between points and vectors. To state this generalization in full
detail, we define an affine frame as a point O and a set of n linearly independent vectors
{v1,v2, · · · ,vn} in Rn. Since every vector u in Rn can be written uniquely as

u = x1 v1 + x2 v2 + · · ·+ xn vn,

setting ~OP = u we get

P = O + x1 v1 + x2 v2 + · · ·+ xn vn.
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Alternatively, an affine frame for En can be described as collection of n+1 points in general
position {P0, P1, · · · , Pn}. The term in general position means that the vectors v1 = P1−P0,
v2 = P2−P0, · · · , vn = Pn−P0 are linearly independent. The term general position is meant
to reflect that if you choose n + 1 at random you should have an affine frame. Rewriting
this description, we have the point P in the affine frame {Pi} to be

P =
n∑

i=0

αi Pi

where
∑n

i=0 αi = 1. The way to view an affine frame is as the point P0 as the origin of a
coordinate system and the vectors vi = Pi − P0 =

−−→
P0Pi as describing the coordinate axes.

11.2 Barycentric Coordinates

We have just shown that every point in a plane can be described as the addition of three
points provided the sum of the coefficients of the points add up to 1. This is an important
fact that we will be using throughout the course. This generalizes to higher dimensions, but
for now we concentrate on constructions in the plane.

Every point P in the plane can be written as a combination of three given
non-collinear points P0, P1 and P2 as follows

P = α0 P0 + α1 P1 + α2 P2

with α0 + α1 + α2 = 1. The triple (α0, α1, α2) is called the barycentric coor-
dinates of the point P with respect to the points P0, P1, and P2.

The coefficients α0, α1, and α2 of the points P0, P1, P2 represent the weight or influence of
the point P0, P1 and P2 in determining the position of the point P .

The notion of barycentric coordinates of a point can be extended to an arbitrary number
of points (irrevelant of the dimension of the space). In particular, given points {Pi} and
coefficients {αi} with

∑
αi = 1 we can describe a point P as

P = α0 P0 + α1 P1 + · · ·+ αn Pn.

This means that given four points in a plane, we can describe a point as α0P0+α1P1+α2P2+
α3P3. The description in this manner is not unique, but it is possible. The uniqueness of
the description is a property of the dimension of the space, and whether or not the points
{Pi} form an affine frame.

It is worth noting that in affine geometry, the following basic result specifies the manner in
which points {P0, P1, P2, · · · , Pn} can be combined. An affine combination is defined to be
a sum ∑

αi Pi

for numbers αi and points Pi. Affine combinations make sense in two situations either∑
αi = 0 or

∑
αi = 1. In the case

∑
αi = 0, the combination

∑
αi Pi is a vector and in

the case
∑

αi = 1, the combination is a point.

To examine in detail the meaning of the coefficients αi, let’s consider the barycentric coor-
dinates of a point P on a line AB. Any point on the line AB can be written as

P = (1− t)A + t B.
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Figure 2: Barycentric Coordinates of a Line

When t = 0, we get the point A and when t = 1 we get the point B. A third special
point on the line AB is the midpoint and this is obtained when t = 1/2. Using barycentric
coordinates, any point on the line AB can be written as

α A + β B

with α + β = 1. When α and β are both greater than zero, the point P = α A + β B is
between the points A and B. When coefficients α is close to one, the point P is close to the
point A. Similarly when the coefficient β is close to one, then the point P is close to B.

When one of the coefficients is greater than one then the other must be less than zero, which
will imply that the point is outside the segment AB, and closer to the point with a positive
coefficient. This may be seen by the example P = 5

3 A− 2
3 B. Write P = A+ 2

3 (A−B) and
then P must be on other side of A than B.

In general, the points on the line segment are obtained by comparing the line AB with a
number line, and associating the point A with the number 0, the point B with the number
1. Let t be an arbitrary number on the number line. If the point P on the line AB is
described by P = (1− t)A + tB, this means that proportion of the lengths of the segments
AP :: BP is given by the fraction t/(1− t). The number t/(1− t) is called the ratio of the
points A, P , B and denoted by ratio(A, P, B). In the diagram below, the line OL represents
the number line with the segment OL being of unit length and the point T on the line OL
represents the length t (i.e. OT has length t). The proportion AP :: BP representing the
fraction t/(1− t) means that the proportions AP :: BP equals the proportion OT :: LT .

An alternative method for interpreting the coefficients α and β in representing the point P
on the line AB is to let α = PB :: AB where the ratio is positive if P is on the same side
of B as A and β = AP :: AB where the ratio is positive if P is on the same side of A as B.
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Figure 3: Alternate view of barycentric coordinates

For a point P in the plane, the coefficients α0, α1 and α2 represent the contribution of the
points P0, P1 and P2 in representing the point P , and again if αi is close to 1 the point
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P is close to Pi. An important fact about barycentric coordinates is that the point P is
inside the triangle P0P1P2 if all the barycentric coordinates are positive. One important
point inside a triangle is the center or centroid of the triangle. This point is described by
the barycentric coordinates (α0, α1, α2) = (1/3, 1/3, 1/3). This point makes the area of the
triangles P0P1P , P1P2P and P0P2P all equal, and thus the triangle is balanced at the point
P assuming the triangle is made out of a homogeneous material; a material with constant
density.

To calculate the barycentric coordinates of a point P in a plane with respect to an affine
frame P0, P1, P2, one can proceed as follows. First, determine the intersection of the lines
PP0 and P1P2. Call this point Q. The point Q has barycentric coordinates Q = β1 P1 +
β2 P2. With respect to P0 and Q the point P has barycentric coordinates γ0P0 +γ1Q, which
yields the coordinates

P = γ0 P0 + γ1 (β1 P1 + β2 P2)
= γ0 P0 + (γ1β1)P1 + (γ1β2)P2.

An illustration of this calculation is in the diagram below.
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Figure 4: Barycentric coordinates in a plane

Determining a point with barycentric coordinates (α0, α1, α2) for an affine frame {P0, P1, P2}
may be done by reversing the above procedure. Define β1 = α1/(1− α0) and β2 = α2/(1−
α0), then determine the point Q = β1 P1+β2 P2 on the line P1P2. The point P is determined
by finding the point P = α0 P0 + (1 − α0)Q. Notice that in this construction, one does
not need to know the coordinates of the points {P0, P1, P2} and we have only used repeated
linear interpolation.

The above procedure is just decomposing barycentric coordinates into repeated linear in-
terpolation. This is a useful way of viewing barycentric coordinates. In fact, the following
quote provides a fundamental viewpoint of linear interpolation.

Most of the computations that we use in CAGD may be broken down into seem-
ingly trivial steps - sequences of linear interpolation. It is therefore important
to understand the properties of these basic building blocks. (Opening of Chapter
Three: Linear Interpolation in CAGD: Curves and Surfaces in Geometric
Design by G. Farin )

This viewpoint will be justified shortly when we start building curves from barycentric
coordinates.
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Figure 5: Barycentric coordinates by repeated linear interpolation

There is an alternate view of barycentric coordinates of a point in a plane P with respect
to the non-collinear points P0, P1, P2 can be interpreted as a ratio of areas. The coefficient
α0 = |PP1P2|/|P0P1P2|, the coefficient α1 = |PP0P2|/|P0P1P2|, and the coefficient α2 =
|PP0P1|/|P0P1P2|, where |ABC| stands for the area of the triangle with vertices A, B,
C. This interpretation makes sense when P is inside the triangle formed by P0P1P 2, and
outside the triangle once one defines a signed area. [Area is a signed quantity, in the
right mathematical notation.] Generalizing this viewpoint, in space, one can interpret the
coefficients with respect to four non-planar points as a ratio of volumes.

11.3 Affine Construction of a Parabola

The geometric construction of a parabola where a parabolic arc from the two endpoints of
the parabolic arc and the intersection of the tangent lines at the endpoints (see diagram
below) is actually an affine construction

���
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Figure 6: Affine construction of a parabola

Rather than just recall the formula, we will derive it here in another way. A parabolic arc
passing through p0 at time t = 0 and through p1 at t = 1 can be given by

c(t) = (1− t)2 p0 + a(t) p1 + t2 p2

where a(t) is the basis function for the other given point p1. This basis function must satisfy
a(0) = 0 and a(1) = 0 so a(t) = b t(1−t). We want c′(0) = λ (p1−p0) and c′(1) = µ (p2−p1)
so that p1 is the intersection of the tangent lines. Differentiating, we have

c′(t) = −2(1− t) p0 + b(1− t) p1 − bt p1 + 2t p2
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from which it follows that c′(0) = −2 p0 +b p1 and c′(1) = 2 p2−b p1. Taking b = µ = λ = 2.
We thus have the parabolic arc

c(t) = (1− t)2 p0 + 2t(1− t) p1 + t2 p2.

We note that this is an affine construction because the coefficients of the points (1 − t)2,
2t(1− t) and t2 sum to one,

(1− t)2 + 2t(1− t) + t2 = 1− 2t + t2 + 2t− 2t + t2 = 1.

Using the viewpoint of barycentric coordinates as repeated linear interpolation, the parabolic
arc may be viewed as

c(t) = (1− t)((1− t)p0 + tp1) + t((1− t)p1 + tp2)

where we find points on the line segment p0p1 and p1p2 and then interpolate between these
two points. This construction geometrically can be done by noting that the tangent line of
c at t = τ (with 0 ≤ τ ≤ 1),

L = c(τ) + c′(τ) s

= (1− τ)2 p0 + 2τ(1− τ) p1 + τ2 p2 + s (2(1− τ) (p1 − p0) + 2τ(p2 − p1)),
= (1− τ)(1− τ − 2s) p0 + 2(τ(1− τ) + s(1− 2τ)) p1 + τ(τ + 2s) p2

intersects the segment p0p1 at
q0 = (1− τ) p0 + τ p1

and the segment p1p2 at
q1 = (1− τ) p1 + τ p2.

This follows by noting that using barycentric coordinates the intersection of L with the
line segment p0p1 occurs when the coefficient of p2 equals 0, which implies s = −τ/2 and
substituting this into L yields (1 − τ) p0 + τ p1. Similarly the intersection of L with p1p2

occurs when the coefficient of p0 equals 0, which implies s = −(1 − τ)/2 and substituting
this into L yields (1 − τ) p1 + τ p2. Thus, the point c(τ) = (1 − τ) q0 + τ q1. The parabola
can then be obtained by repeated linear interpolation, see diagram below.
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Figure 7: Repeated linear interpolation construction of a parabola

This idea of repeated linear interpolation to create a curve is the crux of de Casteljau’s
algorithm. This idea also motivates the majority of the the methods used in the remainder
of this course, as most of them are extension and generalization of de Casteljau’s algorithm.
It is for this reason that the quote near the end of the previous subsection is pertinent and
poignant.
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11.4 de Casteljau’s algorithm

Given a sequence of points p0, p1, · · · , pn, de Casteljau’s algorithm provides a method
for constructing a curve from these points. The curve will not necessarily pass through
these points. [The algorithm will not construct an interpolant to these points, solve the
interpolation problem given the points.] We thus call the points p0, p1, · · · , pn control
points, as they will control the shape of the curve, through the algorithm. The linear
interpolant (piecewise linear curve) through the points p0, p1, · · · , pn is called the control
polyline of the points. The control polyline will be important in later section, when we
want to deduce geometric properties about the curve.

From the control points p0, p1, · · · , pn, we define points on the line segments pipi+1 by
choosing a value t and defining p1

i = (1 − t) pi + t pi+1. Notice that we defined n points in
this manner as i = 0, 1, 2, · · · , n − 1. From the n points p1

i , we can repeat the process and
define the n− 1 points p2

i = (1− t) p1
i + t p1

i+1 on the line segments p1
i p

1
i+1. This process can

be repeated defining
pj+1

i = (1− t) pj
i + t pj

i+1

for i = 0, 1, 2, · · · , n− j − 1 for j = 0, 1, 2, · · · , n− 1 where p0
i = pi. The end of this process

produces a point pn
0 on a polynomial curve of degree n. An example of this procedure is

shown in the diagram below constructing a cubic curve.
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Figure 8: Construction of a cubic curve by repeated linear interpolation

It is worth noting that in the diagram, we obtain two approximations to the curve from
using linear interpolation. The first linear interpolant uses the control polyline the points
p0, p1, p2, p3. The second linear interpolant uses the points p0

0 = p0, p1
0, p2

0, p3
0 , p2

1, p1
2,

p0
3 = p3. The second interpolant is better, that is closer to the curve.

In general, one can use de Casteljau’s algorithm to produce points on the curve, and then
approximate the curve by using interpolation on the points created. In the diagram below,
the points q0, q1, q2, q3, q4 are created by applying de Casteljau’s algorithm with t = 1/4,
t = 1/2, and t = 3/4.
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Illustrating de Casteljau’s algorithm
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Figure 9: Illustration of de Casteljau’s algorithm
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We can write the curve generated by de Casteljau’s algorithm as an affine combination of
the control points by expanding the iterative expressions. We thus obtain a basis function
representation of the curve c(t) as the affine combination,

c(t) = α0(t) p0 + α1(t) p1 + · · ·+ αn(t) pn

where α0(t)+α1(t)+ · · ·+αn(t) = 1. Determining the functions αi(t) is standardly done by
induction (see the Section 4-4). Here, we compute coefficients for the case of cubic curves.
We note from the parabolic case (p2

i ), we have

p2
i = (1− t) p1

i + t p1
i+1

= (1− t) ((1− t) pi + t pi+1) + t ((1− t) pi+1 + t pi+2)

= (1− t)2 pi + 2t(1− t) pi+1 + t2 pi+2,

which is the case for quadratic curves on pi, pi+1, pi+2. For cubic curves, we thus have

p3
0 = (1− t) p2

0 + t p2
1

= (1− t) ((1− t)2 p0 + 2t(1− t) p1 + t2 p2) + t ((1− t)2 p1 + 2t(1− t) p2 + t3 p3)

= (1− t)3 p0 + 3t(1− t)2 p1 + 3t2(1− t) p2 + t3 p3

We note that (1− t)3 + 3t(1− t)2 + 3t2(1− t) + t3 = (1− t + t)3 = 13 = 1 by the binomial
theorem. The functions (1− t)3, 3t(1− t)2, 3t2(1− t), t3 are plotted below.

0

1

1

t

Figure 10: Basis functions for cubic functions from de Casteljau’s algorithm
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11.5 Exercises

1. (BARYCENTRIC COMPUTATIONS) Consider the triangle ABC below. Determine
the position of the the points described by

(a) P = 1
4A + 1

2B + 1
4C

(b) P = 1
3A + 1

2B + 1
6C

(c) P = − 1
6A + 2

3B + 1
2C

(d) P = −A + 3
2B + 1

2C

�

�

�

Figure 11: Compute barycentric coordinates of points from triangle ABC

2. (BARYCENTRIC COMPUTATIONS) Determine the barycentric coordinates of the
center of the circumscribed and inscribed circles of the points A = [1, 2], B = [2, 5],
C = [6, 1]. [Circumscribed circle is the circle with each vertex of the triangle is on the
circle and the inscribed circle is the circle with the sides of the triangle as tangents to
the circle.]

3. (THOUGHT PROBLEM) Are the barycentric coordinates of the center of the cir-
cumscribed circle of a triangle the same for each triangle or do the coordinates vary
with the triangle? What about the barycentric coordinates of the inscribed circle of a
triangle?
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4. Complete the interactive exercises for de Casteljau’s algorithm.

5. Apply de Casteljau’s algorithm on the control points below when t = 1/3 and t = 1/2.
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Figure 12: Apply de Casteljau’s algorithm with these control points

6. COMPUTATIONAL PROBLEM: Show that the tangent line of the curve c(t) gener-
ated by de Casteljau’s algorithm when t = 0 is given by the line through p1 and p0,
and likewise the tangent line when t = 1 is given by the line through pn−1 and pn.

7. COMPUTATIONAL PROBLEM: Determine the derivative of P (t) generated by de
Casteljau’s algorithm in terms of the intermediary points P j

i (t). The tangent line
should be obvious from the interactive exercises. [Show analytically that this is the
correct tangent line, by computing the derivative.]

8. THOUGHT PROBLEM: Can you define a polygon (from the control points) that
necessarily contains the curve generated by de Casteljau’s algorithm? Why or why
not?


