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Optimal Smoothing Spline with Constraints on Its Derivatives

Hiroyuki Kano, Hiroyuki Fujioka and Clyde F. Martin

Abstract— This paper considers the problem of designing
optimal smoothing spline with constraints on its derivatives.
The splines of degree k are constituted by employing normalized
uniform B-splines as the basis functions. We then show that the
[-th derivative of the spline can be obtained by using B-splines of
degree k — [ with the control points computed as /-th difference
of original control points. This yields systematic treatment of
equality and inequality constraints over intervals on derivatives
of arbitrary degree. Also, pointwise constraints can readily be
incorporated. The problem of optimal smoothing splines with
constraints reduce to convex quadratic programming problems.
The effectiveness is demonstrated by numerical examples of
approximations of probability distribution function and concave
function, and trajectory planning with the constraints on
velocity and acceleration.

I. INTRODUCTION

The problem of constructing approximations to curves
with constraints on the derivatives is important in a number
of areas. A classical example is the problem of approximat-
ing the growth chart of an individual from birth to age 18. If
classical smoothing splines are used there is no guarantee that
the curve will be monotone. One looses a lot of credibility
if the chart shows that the child has grown shorter at some
period during its life. The problem of constructing monotone
smoothing splines was solved in [4] using cubic smoothing
splines but the construction was very specific to the cubic
case. Meyer in [9] has also constructed monotone smoothing
splines but her construction is also specific to the cubic case.
In this paper we construct monotone smoothing splines of
higher order using B-splines in conjunction with quadratic
programming. This is important for it allows the one to
take derivatives of the splines and to have good convergence
properties of the derivatives. With cubic splines derivatives
have quite degraded convergence properties. Splines with
constraints on derivatives are also studied in [2], [13].

It is quite easy to construct splines with inequality con-
straints on the derivatives at points. This was done in [10],
[14] and in book form in [5]. The problem reduces to a
quadratic programming problem and is easily solved. The
problem of imposing the constraints on an interval seems
to lead to an infinite dimensional problem which seemed
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out of reach. In [4] the problem was solved as a dynamic
programming problem but the method was special to the
cubic case. Very recently Nagahara, [11], has given a subop-
timal solution to the problem of constructing splines with
derivative constraints using positive systems. In [11] the
constraints are restricted to be of the form x(/)(r) > 0. The
solutions given in this paper include a solution to one basic
problem of constructing splines with x(z) > 0 and x”(¢) <O0.
This is a problem frequently encountered in statistics.

This paper is organized as follows. In Section II, we briefly
review B-splines and design methods of optimal smoothing
splines. Then in Section III, we develop a systematic method
for constructing optimal spline with constraints on its deriva-
tives of arbitrary degree. We examine the performances of
the proposed method by numerical examples in Section IV.
Concluding remarks are given in Section V. All the Lemmas
and Propositions are presented without proofs.

II. PRELIMINARIES

A polynomial spline x(¢) of degree k in an interval ¥ =
[f0,%n]) C R can be represented as

m—1

x(1) =Y uB(a(t —1)), (1)
i=—k
by an appropriate choice of the weighting coefficients 7; € R
called control points [1]. Here, By(¢) is a normalized, uniform
B-spline function of degree k, m is an integer, and o/(> 0)
is a constant for scaling the interval between equally-spaced
knot points #; with

1
lipr—ti= - 2)

It is noted that employing a higher degree k of B-splines
in (1) yields splines x(z) of higher degree and thus allows
us to design more complex curves. Also, for fixed k and
the interval [to,t,], increasing the parameter & (i.e. smaller
knot points spacing) gives us more flexibility of spline design
since m (equivalently the number of control points) increases.
As preliminaries, we briefly review the basic problem of
optimal splines based on normalized uniform B-splines.

A. Normalized Uniform B-Splines

Normalized uniform B-spline By(¢) of degree k is defined
by

Neji(t—j)  j<t<j+1,
Bk([): j:O71a"'7k (3)
0 t<0 or t>k+1,
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and the basis elements N;(¢) (j=0,1,---,k),0<r<1 are
obtained recursively by the following algorithm:

Algorithm 1: Let Noo(t) =1 and, for i=1,2,--- ,k, com-
pute

Noi(t) = %No,ifl(t)

Nji(t) = SFEEINj 1 () + SN (1), 4)
=101

N (1) ENi—1,i-1(1).

Thus, By(¢) is a piece-wise polynomial of degree k with inte-
ger knot points and is kK — 1 times continuously differentiable.

For the sake of later reference, we introduce (k+ 1)-
dimensional vectors Ni(¢) and A (¢) as

Ne(t) = [ Nox(t) Nile) Ne(®) 1T )
m(t) = [ ! 1] (6)

Then Ni(t) is written as
Ni(t) = Sih(t), (7)

where S, € RETD*(+1) jg 3 matrix whose i-th row consists
of the coefficients of polynomial N;_j 4(z). It can be shown
that the matrix S; can be obtained by the following recursive
algorithm. Letting So = 1, compute S; € RETDX(+) for j —
1,2,k by

1
Si:;([ Oip1 IiSict |+ [ ASict O ]), (®)

where the matrices [;,A; € ROHD* are defined as
1 -1

i—1 2 1 -1
i-2 3 1 -1

Here the empty spaces denote zero entries.

B. Optimal Smoothing Splines

The control points 7; in (1) are typically determined by
the theory of smoothing splines (see, e.g. [7] for details).
Suppose that we are given a set of data

{(si,d;) = si €to,tm], di€R, i=1,2,--- N}, (10)

and let 7€ RY (M = m+k) be the weight vector defined by
T

T=[ Tk Tt Tn—1 | (11

Then a standard problem is to find such a T minimizing the
cost function

J(7) =2 t:” <x<2>(t))2dt+ivzlw,-(x(si)—d,-)2, (12)

where A (> 0) is a smoothing parameter, and w;(0 <w; <1)
are weights for approximation errors.
Introducing a vector b(t) € RY,

b(t) = [ Bi(a(t—1—)) Br(ot —t_441))
Bu(a(t—1n)) |7, (13)

the spline x(¢) in (1) is written as x(¢) = t7 b(¢). Then, the
cost J(7) in (12) is rewritten as a quadratic function of T,

J(t)=1"Gr—2g"t+r, (14)
with
G=A0+BWB!, g=BWd, r=d"wd. (15)
Here Q € R"*M is a Gramian defined by
n db(t) d*b" (t
0= ®) ( )dt. (16)

w drr di?

The matrices B € RM*N W c RN ¢ € RN are defined by

B = [ b(s1) b(s2) b(sy) |, (17
W = diag{w;, wa. ---, wy}, (18)
d = [d & v 1" (19)

Notice here that G in (15) is positive-semidefinite, i.e. G >
0, since A >0, 0 >0 and W > 0, and hence J(7) is a
convex function. Thus, if there are no constraints, the optimal
solution is given as a solution of linear algebraic equations,

Gt=g. (20)

Note that (20) has at least one solution and obviously the
solution is unique if and only if G > 0. In addition, once the
parameters k and m (or M(= m+k)) are fixed, the size of
the algebraic equation (20) remains the same regardless of
the number of data N. The Gramian Q € RY*M in (16) can
be computed explicitly by using B-splines (see e.g. [7]).

On the other hand, a given function f(¢), 7 € [to,f,] can
also be approximated by smoothing splines, in which case
the following cost function is used.

fm 2 fm
J(1) =1 (x<2> (t)) di+ [ (x(t)— f(1)2dr.  (21)
1) o
Similarly as above, this cost function is rewritten as
Jr)=1"Gr 28"t + ., (22)

where G, g and f, denote
G=10+0n. 5= ["b0)s0ar. fi= [" P 23)
Here, Qg € RY*M ig defined as
Qo = /ttmb(t)bT(t)dt.
J1g

Obviously, it holds that G > 0 in (23) since Qg > 0 (see [6]),
hence J(7) in (22) is strictly convex in 7 and unique optimal
solution exists.

(24)

III. SPLINE WITH CONSTRAINTS ON DERIVATIVES

For the optimal smoothing spline x(¢) of degree k as
described in the previous section, we impose the following

condition on its /-th derivative
D@y >c Vet (25)

where 0 <1 <k and c is a given constant. Setting ¢ =0
yields monotone splines.
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Moreover, we generalize the constant ¢ in (25) to some
function of 7, e.g. a linear function as

XD(e) > pt+q Vet (26)

Note that such constraints for each knot point interval
[tj,tj+1] allow us more flexible treatment of constraints over
intervals, such as the curve being convex on some interval
and concave on another. Also, the above inequality ">’ can
be readily replaced with *<’ or equality *=’, as we will see
in the subsequent development.

Our problem here is to express such constraints in terms
of the control points 7;. In the sequel, we first develop basic
formula for derivatives of splines.

A. Formula for Derivatives of Spline

Since x(¢) is a piece-wise polynomial of degree k, we
examine the polynomial in each interval [t;,7;1] for j =
0,1,---,m— 1. Focusing on the interval [t;,z;,], the spline
x(t) in (1) is written as

J
Z TB (ot —1;)). 27
i=j—k
Using (3), we then get
Zr, wiNi(a(t —1))), t€ttm],  (28)
and it depends on only the k+ 1 weights 7; _, T;_x41, -+,
7;. Moreover, by introducing a new variable u,
u=o(r—t;), (29)

the interval [t;,7;41] in 7 is normalized to [0,1] in u , and we
may write x(7) as £(u),

k
Ru) =Y Tk iNig (), uel0,1]. (30)
i=0
Letting 7;;_4 ;; € R¥*! be a vector
T
Tk = [ Tk Tjokrl 5], GD
and using (7), we rewrite £(u) in (30) as
£(u) = ;4 Ne(u). (32)

In general, the [-th derivative x()(r) for ¢ € [t;,2j41] is
expressed in terms of u € [0,1] in (29) by

() = o2V (w), (33)

with

k
o ! l
D(u) = Z()ijquiNi(,k)(”) = T[,kah,']N/E )(”) (34
i=
Now we prepare a lemma where derivatives of basis
elements N(z) of splines in (5) are related to lower order
elements by the matrix A; in (9). Here we define a matrix

Ay iy € ROFDX2 for iy > i by

Ay iy = HAva,lA,,l Ay

V=i|

(35)

Lemma 1: The first derivative of vector N;(¢) is given by

NV = AN (1), i=1,2,-- (36)
and hence the [/-th derivative by
1
N () = A yNiat(0). (37)

This lemma shows that the I-th derivative ) (x) in (34)
can be represented by the basis elements N,y (u), (i =

0,1,--- k') of degree k', where
K=k—L (38)
Thus we let
I a T
() = Y 0o iliw () = O 4o jNe(w),  (39)
i=0
where ¢y € R¥*! is defined by
T
O =1 0w 9w o; ] . (40)
From (34), (37) and (39), the vector ¢ K, is related to
Tj-k.j) BY
T
Pk ) = Dlkk—141) Tkl (41)

The coefficients ¢; in (39) are determined in terms of the
control points 7; in (30) as follows, where we introduced a
shift operator z such that

7=t (42)

Lemma 2: The I-th derivative x)(r) of spline x(¢) in (27)
is expressed as spline in (33) and (39), where the control
points ¢; in (39) are given by

¢l_ J— ll( )Tj7 i:j_k/)j_k/+la"'aja (43)
with A,(z) =z7"(1—z1)\.

Remark 1: Noting that 1 —z~! is a difference operator as
(1—z7 Yt =1;—1j_1, the term (1 —z"1)7; in A;_;(2)7;
gives the /-th backward difference beginning with 7;. Then
the remaining factor z=U=) for i= j—k,j—kK +1,---,j
gives all the [-th difference formed from the sequence of
k+1 control points {Tj_k, Tj—k+1, -- Tj}.

Using (33), (39) and u = a(tr —1;) in (29), we get

Nty=d'Y ¢ wiiNip(a(t—1))), t€tjtia]. (44)
=0

The [-th derivative of x(¢) in (1) is then expressed in terms
of B-splines as

l Z (Psz’

i=—k'

(t—1)), t € [to,tm]. (45)

By Lemma 2, we thus have a nice property that the [-th
derivative x()(¢) of spline x(z) is determined by the I-th
difference ¢; of control points 7; for x(z).
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B. Constraints on Derivatives

Now we are in a position to state the constraint in (25) in
terms of the control points T;.
Proposition 1: If the control points ¢; given by (43)
satisfy
0> = i=j—K =K+l @6)
then the spline x(r) satisfies the constraint (25).
Introducing a vector 1; =[1 1 --- 1]7 € R/, the constraint

(46) is written as

c
O-wj = o 47

and (41) gives the expression in terms of original control
points 7; as

Ly,

A[];c,k+1—1] Tjk,j) 2 1k’+1 (48)

This constraint is easily extended to knot point interval of
arbitrary length, say [t;,7;1,] for n>1, as
(49)

T
Aln—1 ern—1) Tj—k, j4n—1] = 1k’+n

Example 1: If we impose the constraint (25) over the
entire interval, namely x()(r) > ¢, Vr € [to,1,], then letting
j=0and n=m in (49) yields the constraint on the control
point vector T as

AT

C
ketm—1tm-0T = o (50

Ly m

since T[_g 1] = T by (11).
Example 2: Since the first and second derivatives of x()
are of panicular interest, we introduce simpler notations.

Letting Dj = Af; = Al and D} = Al | = (AiAi-1)", we
have

-1 1

-1 1 o
D} = : (eR*(TD) (51)
-1 1

and

1 -2 1

1 -2 1
D} = o (€ R¥(72) (52)
1 -2 1

where the empty spaces denote zero entries.

Using these matrices, the condition (50) for [ =1 and
[ = 2 are rewritten as D,£+m71‘c > glkﬂn,l and D%+m72‘r >
o2 Lkm—2, Tespectively.

Next we generalize the constraint in (25) from constant ¢
to some function of . Specifically, we consider the constraint

(1) > v(t) Vi € ftjut] (53)

where we assume that v(¢) is itself a spline of degree k' and
expressed in terms of B-splines as

Then v(¢) in the interval [f;,7;11] is written as

Z WiBy (ae(t —1;)) t € [tj,tj41] (55)
i=j—k'
and, similarly as (27)-(30) with k = k’, we get v(¢) = ¥(u)
with u = o(r —¢;) and
k/
O(u) =Y Mj_p+iNiw(u), uel0,1]. (56)

i=0

Proposition 1 is now generalized as follows.

Proposition 2: If the control points ¢; given by (43)
satisfy 1

1 . . .

¢i Z a’ l:]_k/ﬂ]_k/+la"' »Js
then (53) holds.

Example 3: A simple but useful example of v(¢) in (54)
is a linear function in ¢, say,

(57)

v(t) =p(t—10) +q. (58)
This function is realized by the control points y; given by
1
Hi=5— (2i+K+1)ptq, i=j—K, j—K+1,-,j (59

200

For example, by setting / = 0 in Proposition 2, the con-
dition ¢; > u;, i=j—k,j—k+1,---,j with the above y;
guarantees that the function x(r) satisfies

x(l) > p(t_IO) +q Vt € [tj,lj+1].

Also, for the inequality to hold on the entire interval [to, ),
we simply let j =0,1,--- ,m—1 yielding ¢; > u; for i =
—k,—k+1,--- ,m—1.

As we have seen, we now have a method of describing
equality and inequality constraints on all the derivatives of
splines over basic knot point interval, and hence any knot
point intervals. Moreover, we can describe various types of
constraints at isolated points and integral values of splines
[8]. All these constraints are expressed as linear constraints
on the control points.

Thus, we can now design optimal smoothing splines by
minimizing the convex quadratic cost J(7) as shown in (14)
and (22), whereas a number of constraints on the splines
are expressed as linear constraints on 7, either equality or
inequality or both. A general form of problems is then

(60)

1
min J(t) ==t/ Gt+g't (61)
TERM 2
subject to the constraints of the form
At=d, i<ET< fo, h <T<h, (62)

for some matrices and vectors of appropriate dimensions.
A very efficient numerical algorithm is available for this
purpose (see, e.g. [12]).

IV. NUMERICAL EXAMPLES

We examine the design method presented in the previous
sections numerically. As examples, we consider the prob-
lems of approximating probability distribution function and

Z WiBy (ot —1;)). (54) nonnegative concave function, and trajectory planning. Either
— cubic (i.e. k =3) or quintic (k =5) splines are used.
6788
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(b) Randomly spaced data points

Fig. 1. Approximation of Gaussian probability distribution function f(z)
from its sampled data * by cubic smoothing splines with and without the
monotonicity constraints (64), denoted x(¢) and xo(¢) respectively.

A. Approximation of Probability Distribution Functions

Let f(¢) be the Gaussian probability distribution function
with zero mean and unit variance. We then approximate
f(t) in the interval [fo,t,] = [-5,+5] from its samples
di = f(s;), i=1,2,--- ,N. For N =5, we consider the two
cases where the sampling points s; are equally spaced and
randomly spaced. It is noted that the knot points are equally
spaced and the same in both cases.

With k=3, a =1/2 and m =5 in (1), we reconstruct f()
as an optimal smoothing spline x(¢) based on the criterion
(12) with A = 1073 and w; = 1/N. We impose the equality
constraints at the boundaries,

x(—=5) =0, x(5) =1, (63)
and inequality constraints on the first derivative as
(@) >0vre[-5,5]. (64)

For specifying the constraints in terms of the control point
vector 7, we use the method in [8] for (63) and the method
developed in Section III for (64).

The results are shown in Figure 1, where the data points
(si,d;) are shown by asterisks *, and f(¢) and the designed
spline x(¢) are plotted in black dotted line and blue solid
line respectively. Also we showed in red solid line an optimal
smoothing spline x((z) obtained without the constraints (64).
We see that the curve x(¢) closely approximates f(¢) while
maintaining the monotone nondecreasing property specified
as (64), which is not the case with the curve xo(t).

Fig. 2. Approximation of nonnegative concave function f(z) from its noisy
samples * by quintic smoothing splines with and without the constraints on
the second derivative in (66), denoted x(¢) and xo () respectively. The splines
x(t) and xo(t) (top) and their second derivatives (bottom).

B. Approximation of Concave Function

We approximate the following concave function

£(6) = cos(t)

in [fo,tn] = [-7/2,m/2] by optimal smoothing spline x(r)
with the constraints

(65)

x(t) >0, XP@)<0 vie|-n/2,7/2]. (66)

The data (s;,d;) are generated by sampling f(r) at 20(=
N) equally spaced points s; in [—7/2,7/2] with additive
Gaussian white noise of zero mean and standard deviation
0.1.

The design parameters for smoothing are set as k =5,
m =20, A =0.0001 and w; = 1 /N. The constraint x(¢) > 0 Vt
in (66) is realized by T > 0 (see [8]), whereas x(?)(1) <0 Vr
is realized by Djzl/I—ZT < 0 for the matrix D% defined in (52).

The results are shown in Figure 2, where xo(¢) is an
optimal smoothing spline obtained without the constraint
x?)(r) <0 Vr. We observe that the desired results are
obtained by including the constraints on second derivative.

C. Trajectory Planning

We consider a trajectory planning problem with equality
and inequality constraints [3]. The time interval of interest
is [to,tw] = [0,1], and the initial and terminal conditions are
set as

x(0) =x(0) =x2(0) =0, x(1)=1, XV (1)=xP (1) =0.
(67)
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Fig. 3. Planned trajectories x(¢) (top), x!) (r) (middle) and x® (r) (bottom)
by quintic smoothing splines, and their counterparts xo(7), xf)l) (¢) and x((f) (1)
without the constraints in (69).

We require the trajectory x(¢) to pass through the intervals
[x;,%;] at the three time instants s; =0.25, s =0.5, 53 =0.8,
namely

x; < x(si) <X,

i=1,2,3, (68)

with [x;,%1] = [0.3,0.5], [x,,%2] =[0.1,0.3], and [x3,%3] =
[0.8,1.0]. Moreover, the magnitudes of the velocity and
acceleration are limited for the entire interval of time as

kD)) <2, @) <20, veelo,1]. (69)

For designing the smoothing spline by the criterion in
(12), we use the mid points of each interval in (68) as the
data points, namely d; = (x; +%;)/2 fori=1,2,3 (=N), and
thus (s1,d;) = (0.25,0.4), (s2,d2) = (0.5,0.2), and (s3,d3) =
(0.8,0.9) in (10). The design parameters are k =5, a =20
and m =20 in (1), and A = 107> and w; = /N = 1/3 in
(12).

Figure 3 shows the planned trajectory x(¢) and its deriva-
tives x(1)(¢) and x(®(¢) in blue lines. The red lines show the
optimal splines x((¢) and its derivatives obtained without the

velocity and acceleration constraints (69). We see that the
trajectory x(¢) satisfies all the constraints.

V. CONCLUDING REMARKS

We presented a systematic method for designing optimal
smoothing splines with equality and/or inequality constraints
on their derivatives over intervals. The splines of degree
k are constituted employing normalized uniform B-splines
as the basis functions, and hence the central issue is to
determine an optimal vector T of the so-called control points.
The [-th derivative of the spline are obtained by using B-
splines of degree k — [ with the control points computed as
[-th difference of original control points in 7. This yielded
systematic treatments and solutions for problems with equal-
ity and inequality constraints over intervals on derivatives
of arbitrary degree. Also, pointwise constraints can readily
be incorporated. We demonstrated the effectiveness of the
design method by numerical examples, namely, approxima-
tions of Gaussian distribution function and concave function,
and trajectory planning with the constraints on velocity and
acceleration.
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