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Abstract

In nonparametric regression the smoothing parameter can be selected by minimizing a Mean
Squared Error (MSE) based criterion. For spline smoothing one can also rewrite the smooth
estimation as a Linear Mixed Model where the smoothing parameter appears as the a priori
variance of spline basis coe6cients. This allows to employ Maximum Likelihood (ML) theory
to estimate the smoothing parameter as variance component. In this paper the relation between
the two approaches is illuminated for penalized spline smoothing (P-spline) as suggested in
Eilers and Marx Statist. Sci. 11(2) (1996) 89. Theoretical and empirical arguments are given
showing that the ML approach is biased towards undersmoothing, i.e. it chooses a too complex
model compared to the MSE. The result is in line with classical spline smoothing, even though
the asymptotic arguments are di<erent. This is because in P-spline smoothing a =nite dimensional
basis is employed while in classical spline smoothing the basis grows with the sample size.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Penalized spline estimation (P-spline) for smoothing traces back to Parker and Rice
(1985) and O’Sullivan (1986), but it was Eilers and Marx (1996) who made the method
popular by illuminating the numerical practicability and Bexibility of the approach. The
major idea behind P-spline estimation is thereby simple. For smooth estimation a large
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but =nite dimensional basis is employed. Instead of simple parametric =tting, however,
which would lead to variable and wiggling estimates, a penalized version is pursued
to provide a smooth =t. Practical experience has shown that the concrete speci=cation
of the basis and its dimension has little inBuence on the =t (see e.g. French et al.,
2001 or Ruppert, 2002). More relevant for the smoothness of the =t is the amount of
penalization applied. Some =rst theoretical considerations on how to choose the right
amount of penalization are found in Wand (1999) or Aerts et al. (2002).

The idea of P-spline smoothing is strongly related to Linear Mixed Models. This
becomes obvious if the basis coe6cients are considered as random e<ects and the
penalization appears as a priori distribution imposed on the basis coe6cients. In this
scenario spline smoothing is equivalent to (maximum) posterior Bayes estimation in
the resulting Linear Mixed Model and the smoothing parameter plays the role of the a
priori variance of the basis coe6cients. This in turn can be estimated using Maximum
Likelihood (ML) theory as suggested in Wecker and Ansley (1983) and further dis-
cussed, e.g. in Wahba (1985), Li (1985), Stein (1990) or Speckman and Sun (2001).
Recently, Efron (2001) and Kou and Efron (2002) illuminate the connection from a
geometrical point of view. References discussing the relation between spline smoothing
and Mixed Models in general include also Green and Silverman (1994), Brumback and
Rice (1998) or Verbyla et al. (1999).
For P-spline smoothing there appears a major di<erence compared to classical spline

smoothing treated in the above-cited papers. In classical spline smoothing for each
observation a separate basis function is included. This means that the resulting basis
matrix is n× n dimensional, with n as sample size. In contrast, for P-spline smoothing
a prespeci=ed high but =nite dimensional basis is used. This allows to exploit the
link to Linear Mixed Models not only from a theoretical angle but also practically. In
particular Linear Mixed Models software (see e.g. Pinheiro and Bates, 2000) can be
used for smoothing (see Wand, 2003). In case of a non-normal response this generalizes
to Generalized Linear Mixed Models with penalized quasi-likelihood estimation (see
also Breslow and Clayton, 1993). Again, in the Linear Mixed Model formulation the
smoothing parameter steering the amount of smoothing is the ratio of the a priori
variance of the basis coe6cients and the residual variance. This in turn suggests to
take the ML or the Residual Maximum Likelihood (REML) estimator (Harville, 1977)
as smoothing parameter selection.
This note intends to illuminate the REML choice in more depth. We show that

asymptotically REML-based smoothing parameter selection is biased towards under-
smoothing. This resembles results found for spline smoothing (see e.g. Efron, 2001).
Our asymptotic arguments are however di<erent to those used in classical spline
smoothing. This is since for P-spline smoothing a =nite dimensional basis is used
while for classical spline smoothing the basis grows with the sample size. This also
implies that asymptotically P-spline smoothing leads to standard parametric =tting and
penalization is losing its e<ect for growing sample size.
The paper is organized as follows. In Section 2, we introduce di<erent Smooth-

ing parameter selection routines. Asymptotic investigation is provided in Section 3
while Section 4 explores the =nite sample performance. A discussion concludes the
paper.
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2. Smoothing and mixed models

2.1. Mean-squared error

Let us consider the simple smoothing model

yi = f (xi) + �i; i = 1; : : : ; n (1)

with xi as metrical covariate, f(·) as unknown smooth function and �i as independent
normally distributed residuals, i.e. �i ∼ N(0; 
2� ). For simplicity of presentation we will
assume that 
2� is known. P-spline estimation is now pursued by replacing f(·) by the
parametric form

yi = xTi � + z
T
i b+ �i; (2)

where xi is a low-dimensional parametric basis build from xi, e.g. the linear basis
xi=(1; xi)T, and zi is a high-dimensional basis linearly independent of xi. A convenient
choice is to use truncated polynomials, i.e. zi = {(xi − �1)+; : : : ; (xi − �K)+} with (·)+
as positive part, that is (x)+ = x for x¿ 0 and (x)+ = 0 for x¡ 0. The knots �k are
thereby =xed values covering the range of xi, i = 1; : : : ; n.
The general idea is to choose basis zi in a “lush” and “generous” manner such that

the di<erence �(xi) = f(xi) − xTi � + zTi b is of ignorable size. In particular we assume
that dimension K of basis z is large but =nite and =xed independently of sample size
n. Direct estimation of coe6cients � and b by maximizing the likelihood resulting
from (2) would lead to highly variable and wiggled estimates for f(x). To achieve
smoothness a penalty is introduced leading to the penalized likelihood

l(�; b; �) = − 1
2 (Y − X� − Zb)T(Y − X� − Zb) − 1

2b
TDKb=� (3)

with � as smoothing parameter and Y=(y1; : : : ; yn)T, X=(x1; : : : ; xn)T and analogously
Z =(z1; : : : ; zn)T. Matrix DK is a K ×K dimensional penalty matrix which for reasons
to become clear later is assumed to be symmetrical and invertible. Di<erentiating (3)
with respect to � and b leads to the estimating equations:

�̂ = (XTX)−1XT(Y − Zb̂); (4)

b̂= (ZTZ +DK=�)−1ZT(Y − X�̂): (5)

Parameter � in (3) plays the role of a smoothing parameter. Letting � tend to in=n-
ity leads to standard maximum likelihood estimates while � → 0 implies b̂ → 0 so
that f̂(x) = xT�̂ results as parametric =t. A reasonable choice for � is obtained by
minimizing the Mean-Squared Error (MSE). We therefore assume that covariates xi
have compact support so that Fisher information matrices are of order O(n). This
means for instance that matrix FZ:X := n(ZTZ−ZTX(XTX)−1XTZ)−1 has order O(1).
Similar to the results provided in Wand (1999) we get the optimal MSE smoothing
parameter

�MSE =
bTDKFZ:XDKb+ 3
2� tr(FZ:XDKFZ:XDK)=n


2� tr(FZ:XDK)
+ O(n−2) (6)
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with tr(·) denoting the trace of a matrix. A short sketch of this statement is provided in
the appendix. The optimal MSE smoothing parameter depends on both, the unknown
but =xed coe6cient b and matrix FZ:X . It is also worth noting that for 
� ¿ 0, �MSE

has order O(1).

2.1.1. Cp estimate
An asymptotically unbiased estimate for the optimal MSE smoothing parameter is

obtained, for instance, from the Cp criterion (see Mallows, 1973)

CCp(�) = (y− X�̂ − Zb̂)T(y− X�̂ − Zb̂) + 2
2� tr(S�); (7)

where S� is the smoothing matrix de=ned via S�y = X�̂ + Zb̂, see the appendix for
details. Minimizing (7) provides the smoothing parameter estimate �̂Cp. Straightforward
calculation reveals the asymptotic form

�̂Cp =
b̂TDKFZ:XDK b̂

2� tr(FZ:XDK)

{1 + Op(n−1)}; (8)

so that �̂Cp results as plug-in estimate of (6). For practical purposes form (8) is of
little use unless the sample size is very large. Therefore a grid search to minimize (7)
should be preferred.

2.2. REML estimate

The penalized likelihood (3) resembles the likelihood in the Linear Mixed Model

b ∼ N(0; 
2bD
−1
K ); Y |b ∼ N(X� + Zb; 
2� In): (9)

Considering b as random e<ect we can marginalize (9) and get

Y ∼ N(X�; 
2�V�) (10)

with V�=In+�ZD
−1
K Z

T and �=
2b=

2
� . Model (10) is well established (see e.g. Searle

et al., 1992) and the best linear unbiased predictor for b is given by (5). It is classical
theory that (4) gives to the maximum likelihood estimate for � and simple algebra
leads to the form

�̂ = (XTV−1
� X)−1(XTV−1

� Y): (11)

In model (10) the smoothing parameter � relates to the a priori variance of b. This
can be estimated by maximizing the REML likelihood (see Harville, 1977)

lREML(�; �) = − (Y − X�)TV−1
� (Y − X�)

2�

− log|V�| − log|XTV−1
� X |: (12)

Di<erentiating (12) with respect to � and inserting estimates for � provides the REML
estimate (see the appendix for details)

�̂REML =
b̂TDK b̂=
2� + tr(FZ:XDK=n)

K
+O(n−2): (13)
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In general, REML estimation takes the estimation of � into account which is mirrored
in the latter component in (12) and likewise in the second component in the numerator
in (13). If instead simple maximum likelihood estimation of � is pursued the second
component of the numerator of (13) is omitted.

3. Asymptotic comparison of smoothing parameter selectors

3.1. Mixed model

We will now compare the two smoothing parameter selectors �̂REML and �MSE. The
conceptional di<erence between the two approaches is obvious. For the REML estimate
we assume the Linear Mixed Model (9) to hold, in particular coe6cient vector b is
considered as random. In contrast for MSE smoothing parameter selection we take b as
=xed but unknown. This means we assume a model which consists of the second part
in (9) only, that is we condition on b. The following theorem illuminates the behavior
of the smoothing parameter estimates if the Linear Mixed Model (9) holds and b is
random.

Theorem. Assuming xi to have compact support and considering model (9) as true
model we get asymptotically

P(�̂REML¿�MSE) = P

(
K∑
k=1

�kX
2
k ¿ 0

)
+O(n−1); (14)

where X2
k , k=1; : : : ; K are independent Chi squared distributed variables with 1 degree

of freedom and �k = 1=K − �k=
∑K

l=1 �l, where �k are the eigenvalues of FZ:XDK .

The proof of the theorem is provided in the appendix. In principle P(
∑K

k=1 �kX
2
k ¿ 0)

can be calculated using the ideas of Davies (1980), even though nowadays simple nu-
merical simulation techniques appear more natural. The result gives the asymptotic
probability that the REML estimate undersmoothes. In standard scenarios this proba-
bility will be larger than 0.5. For instance for truncated polynomials taking DK = IK
the eigenvalues of FZ:X are skewly distributed so that

∑K
k=1 (1=K − �k=

∑
l �l)

3¡ 0.
This in turn implies P(

∑
k �kX

2
k ¿ 0)¿ 0:5. The simulation study below illuminates

this point in more depth.

3.1.1. Simulation study
We run a small simulation study to visualize the above result. A more comprehensive

study focusing on small sample properties is given in the next section. We draw n=250
and 750 data points from the model yi = (1; xi)�+ zTi b+ �i with �= 0 for simplicity,
and xi as equidistant points on [0; 1]. Basis z is built from K = 30 truncated linear
lines with DK = IK (as has been suggested as penalty matrix for this basis by Ruppert
and Carroll, 2000). Components b are drawn independently from a standard normal
distribution while �i ∼ N(0; 
2� ) with 
�=0:2. Smoothing parameter estimates are found
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Fig. 1. Degrees of freedom df (�MSE) plotted against df (�̂REML) for n=250 (upper plot) and n=750 (middle
plot). Coe6cients �k (bottom plot), indistinguishable for n = 250 and 750.

Table 1
Empirical and asymptotic probability for undersmoothing

P(�̂REML¿�MSE)

n = 250 n = 750

Empirical 50.4 53.0
Asymptotic 50.9 54.1

based on a 50 dimensional grid search. Note that �MSE is calculated conditional on b,
so that by simulating b it is random.
Fig. 1 shows the results based on 300 simulations. Instead of plotting the actual

values of �, which are hard to interpret, we plot the corresponding degrees of freedom,
that is df (�) = tr(S�). The left plot is for n=250, the middle plot for n=750 (points
have been jittered for better visual impression). The scatterplots of df (�̂REML) against
df (�MSE) show a reasonable amount of correlation. We are however interested in the
proportion of points lying above the diagonal. This is summarized in Table 1 (with
choices �MSE = �̂REML due to the grid search divided uniformly on the two groups
�̂REML¡�MSE and �̂REML¿�MSE, respectively). As can be seen the REML estimate is
undersmoothing as stated in the theorem, even though the e<ect is weak but increases
with growing sample size. To complete the picture we also calculate the asymptotic
distribution based on (14) by simulating

∑K
k=1 �kX

2
k . Coe6cients �k are shown in

the right plot of Fig. 1 and the corresponding simulated probabilities are included in
Table 1. The simulations clearly support the theoretical =ndings.

3.2. Smoothing model

The result above is derived under the assumption of a Linear Mixed Model, that is
coe6cient vector b is assumed to be normally distributed. A more realistic scenario for
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smoothing is however to consider b as =xed but unknown. This means we assume f(x)
to be approximated by X� + Zb, where coe6cients � and b are unknown but =xed.
The optimal MSE smoothing parameter can then be estimated using the Cp criterion
(7) and from (8) we get the asymptotic relationship

�̂REML − �̂Cp =
1

2�
b̂T(DK=K −DKFZ:XDK=tr(FZ:XDK))b̂{1 + Op(n−1)}:

For simplicity we set DK = IK subsequently and let as above �k be the eigenvalues of
FZ:X corresponding to the eigenvectors uk , k =1; : : : ; K: This yields U =(u1; : : : ; uK) as
resulting eigenbasis and for ĉ =UTb̂ we get the form

�̂REML − �̂Cp =
1

2�
ĉT
(
IK=K − diag(�k)

/∑
l

�l

)
ĉ{1 + Op(n−1)}: (15)

Note that estimate b̂ is asymptotically N(b; 
2�FZ:X =n) distributed assuming �=O(1) (see
also (29) in the appendix). Accordingly we get asymptotically ĉ ∼ N(c; 
2�diag(�k)=n),
with c =UTb, so that the quadratic form (15) allows for the approximation

�̂REML − �̂Cp ∼ 1

2� n

K∑
k=1

�kX2
k;� (16)

with X2
k;�k as noncentral Chi-squared variables and �k =�k=K −�2k =

∑
l �l, k=1; : : : ; K .

The noncentrality parameters �k result from the fact that b is assumed to be =xed and
not necessarily zero. Apparently, if b= 0 the noncentrality vanishes and one obtains a
behavior similar to (14) in the above theorem. Considering the noncentrality in more
depth reveals the bias

E(�̂REML − �̂Cp) =
1

2�

(∑
k c

2
k

K
−
∑

k c
2
k�k∑

k �k

)
+O(n−1); (17)

where c=(c1; : : : ; cK)T. In applications this bias will be typically positive meaning that
�̂REML is biased toward undersmoothing. To demonstrate this point we consider the
transformed basis ZXU , where ZX = (I − X(XTX)−1XT)Z . Note that ZX b= ZXUc,
so that c results as the coe6cient vector for the transformed basis ZXU . The columns of
the transformed basis matrix relate to the eigenvalues �k such that the larger eigenvalue
�k the more complex is the basis function given by the kth column of ZXU , k=1; : : : ; K .
Using a 30 dimensional basis built from truncated linear lines we show in Fig. 2 for two
di<erent underlying functions (see plots in left column) the corresponding coe6cient ck
(plots in middle column) in decreasing order of the eigenvalues. Bias (17) is mirrored
in the right column where we show c2k =K plotted against c2k�k=

∑
k �k . All points lie

below the diagonal which means that quantity (17) is positive. Consequently, the REML
estimate is asymptotically biased and will undersmooth. Such behavior can be observed
as long as the true underlying function can be well approximated by basis functions
in ZXU corresponding to small eigenvalues. These are the less-structured functions. In
other words, as long as matrix Z is chosen generously enough one is faced with a bias
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Fig. 2. Coe6cients ck (middle column) for di<erent functions (left column) with a typical sample of size
n = 750. The right column shows c2k =K plotted against c2k�k =

∑
k �k .

leading to undersmoothing of �̂REML. One should keep in mind that this statement is
again formulated in an asymptotic sense and small sample behavior can look di<erently
as the next section will show.

3.2.1. Simulation study
We run a simulation study to investigate the large sample performance in practice.

The study will be continued in the next section using a small and moderate sample
size. We simulate data from the two functions shown in Fig. 2. The =rst is f1(x) =
1:5�{(x−0:35)=0:15}−�{(x−0:8)=0:04} with �(·) as standard normal density (upper
row in Fig. 2) and the second is f2(x)=0:5 sin(2�x) (bottom row). For =tting we use a
K=30 dimensional truncated linear basis. We draw n=750 observations and calculate
�̂REML and �̂Cp using a 50 dimensional grid search. The corresponding estimated degrees
of freedom based on 300 simulations are shown in Fig. 3 in the right hand column. The
dotted vertical and horizontal line indicate the optimal MSE choice. The tendency of
undersmoothing for �̂REML is obvious, in particular for the second example. It appears
however that for small sample sizes (two right hand columns) the e<ect looks di<erent
for the =rst function. An explanation for this phenomena will be given in the next
section.
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Fig. 3. Selected degrees of freedom df (�̂Cp) plotted against df (�̂REML) for di<erent sample sizes. Upper row
is for function f1(x), bottom row for f2(x). Vertical and horizontal lines show optimal MSE choice.

3.2.2. Variance
It can also be observed from the simulation that �̂Cp is more variable than �̂REML.

This can also be shown asymptotically since

Var(�̂REML) =
2
2�
K2

K∑
k=1

�2k ;

Var(�̂Cp) =
2
2�

(
∑K

l=1 �l)
2

K∑
k=1

�4k ;

which easily proves

Var(�̂Cp)¿Var(�̂REML):

4. Finite sample comparison

We will now investigate the rate of convergence in more depth. The results so far
are derived up to an asymptotic correction of order O(n−1). It is however well known
that asymptotic convergence for smoothing parameter selection criteria may be slow in
practice (see H)ardle et al., 1988) and it seems therefore worthwhile to explore small
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sample properties as well. To do so we =rst show that the Cp criterion as well as the
REML criterion can be comprehended as a penalty concept, where the goodness of =t
is penalized by the complexity of the model. This means we write both criteria in the
form

C(�) = (Y − f̂ )T(Y − f̂ ) + D(�) + const (18)

with f̂ =X�̂+Zb̂ and const collecting all components not depending on �. The function
D(�) can be comprehended as a measure for complexity of the model. For �̂Cp we get
with (7)

DCp(�) = 2
2� tr(S�) = 2
2� tr(F
−1
Z:XFZ:X;�) + const

with

FZ:X;� = n((ZTZ +DK=�) − ZTX(XTX)−1XTZ)−1:

For the REML estimate a decomposition like (18) is less obvious. Using (24) and (25)
in the appendix we can however rewrite CREML(�) = −
2� lREML(�̂; �) to

CREML(�) = (Y − X�̂)TV−1
� (Y − X�̂) + 
2� log|V�| + 
2� log|XTV−1

� X |

= (Y − f̂ )T(Y − f̂ ) + DREML(�) (19)

with stochastic complexity

DREML(�) =
b̂TDK b̂
�

+ K log(�) − log|FZ:X;�|: (20)

For simplicity of investigation we again assume DK = IK . Denoting as above with �k
the kth eigenvalue of FZ:X we =nd �k{1− �k=(�k + �n)} as eigenvalue of FZ:X;�. This
allows us to rewrite the complexities to

DCp(�) = 2
2�
∑
k

(�n=(�k + �n)); (21)

DREML(�) =
ĉTĉ
�

+ 
2�
∑
k

log(�k + �n) (22)

with ĉ=UTb̂. The objective is now to compare (21) with (22). A conspicuous property
of DREML(�) is that it is non-monotonic. This non-monotonicity implies that small
values of � achieve a large complexity and hence are not selected by the REML
criteria. This in fact mirrors the bias towards undersmoothing as the simulation study
below will show. Moreover DREML(�) is stochastic while DMSE(�) is deterministic. We
=nd asymptotically

ĉ|c ∼ N
(
diag(1 − �k=(�k + �n))c;


2�
n
diag{�k(1 − �k=(�k + �n))2}

)
: (23)

Note that in (23) we explicitly include terms of order O(n−1) which have been omitted
in the previous section. With (23) we can write the stochastic component in DREML(�)
as a weighted sum of non-central Chi-squared distributed variables. This means we
get ĉTĉ =

∑
k v

2
kX

2
k;�k =n where vk = 
�

√
�k(1 − �k=(�k + �n)) and X2

k;�k as noncentral
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Fig. 4. Complexity measure DREML(�) with pointwise con=dence intervals (solid lines) and DMSE(�) (dotted
lines). Upper row is for function f1(x), bottom row for f2(x).

Chi-squared variables, i.e. X2
k;�k = z

2
k with zk ∼ N(#k ; 1). The non-centrality parameters

are independent of � and de=ned through #k =
√
nck=(
�

√
�k). Considering the com-

plexity in more depth we observe that only components #k , k=1; : : : ; K , depend on the
unknown underlying function and hence small sample behavior of the REML estimate
is determined by #k exclusively.

4.1. Simulation

We extend the simulation study from the previous section but use small sample
sizes of order n = 150 and 300. In Fig. 3, we show the resulting estimated degrees
of freedom for the functions seen in Fig. 2 (left column). It appears that there is
clear undersmoothing taking place, even for small samples for the sinus shape function
f2(x) (bottom row). However for the =rst function f1(x) for small n the e<ect is
vice versa and �̂REML tends to oversmooth. We explore the di<erent behavior for the
two functions by plotting the complexity measures D(�). In Fig. 4, we plot DREML(�)
and DMSE(�) for the three di<erent sample sizes. Additionally we include a plot for a
very large sample size n=10:000. For DREML(�) we include pointwise 95% con=dence
intervals based on (23). There are various things noticeable from these plots. First and
most apparent DREML(�) is not monotonic. This means in particular that small values
of � exhibit a large complexity when measured with DREML(�) and hence the routine
tends to leave small values of � unselected. The U shape of DREML(�) also contributes
to the low variance of �̂REML, since small as well as large values of � are strongly
penalized.
From Fig. 4 we also get insight in the di<erent small sample behavior. Considering

DREML(�) for f1(x) for sample size n = 150 (upper left plot) we see that DREML(�)
and DMSE(�) have a rather similar shape and in fact DREML(�) shows a larger slope
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Fig. 5. Selected degrees of freedom for di<erent values of K and n. Upper four plots show results for
function f1(x), lower 4 plots are for function f2(x).

so that small values of � are preferred. Accordingly �̂REML tends to oversmooth as can
be seen in Fig. 3 upper left plot. If n increases however the U shape of DREML(�)
becomes dominant and �̂REML starts undersmoothing. Finally, the minimum of the U
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shape of DREML(�) is larger than the mean of �̂MSE which expresses the general bias
derived in (17).
We extend the simulation to explore the e<ect of the choice of K . For sample sizes

n=150 and 750 we build matrix Z from truncated linear lines (x− �k)+, k =1; : : : ; K ,
with �k equidistant points on [0; 1]. We choose K=15 and 60 and run for each setting
150 simulations. The results are shown in Fig. 5. For function f1(x) (upper 4 plots) we
observe the same behavior for the larger basis with K=60 as in Fig. 3. For K=15 the
basis seems to be too small so that even for n=750 the REML estimate oversmooths.
For function f2(x) undersmoothing of the REML estimate is evident for all settings.
Finally we run some simulations with 
2� being estimated by 
̂2� = (Y − f̂ )T

(Y − f̂ )=(N − df), with df as degree of freedom calculated from the trace of the
smoothing matrix. Except of an increased variability of the smoothing parameter esti-
mates the results were the same as those seen in Fig. 3. For space reasons we therefore
do not include the resulting plots here.

5. Discussion

In this paper, we compared smoothing parameter selection for P-spline smoothing
based on Mean-Squared Error minimization and REML estimation. We discussed dif-
ferent scenarios and showed that the REML estimate has the tendency to undersmooth,
i.e. it chooses a too complex model. For small samples this e<ect can be vice versa
depending on the underlying function. The asymptotic result is in line with standard
spline smoothing, but the asymptotic scenario is di<erent. While for standard spline =t-
ting the basis grows with the sample size for P-spline smoothing the dimension of the
basis is kept =xed. There has been little discussion in the P-spline literature whether K
should be =xed independently of n and kept =xed even if n increases. Ruppert (2002)
suggests a data based choice of K but also shows that K depends only very little
on n.
The problem tackled in this paper was on global smoothing parameter selection. If

the function =tted has in fact varying complexity over x a local choice of the smoothing
parameter might be more appropriate. This has been suggested in Ruppert and Carroll
(2000).
Finally, in concordance with =ndings in classical spline smoothing the REML esti-

mate shows a reduced variability compared to the Cp alternative. This can be explained
asymptotically as well for small samples by the functional form of the criteria.

Appendix A. Technical details

Before deriving asymptotic results we point out the following relationship which is
used throughout the paper. Simple matrix algebra shows that

V−1
� (Y − X�̂) = Y − X�̂ − Zb̂ (A.1)
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with b̂ as de=ned in (5). Moreover we get again with simple matrix algebra

ZT(Y − X�̂ − Zb̂)
=ZT(Y − X�̂) − ZTZ(ZTZ +DK=�)−1ZT(Y − X�̂)
={I − ZTZ(ZTZ +DK=�)−1}ZT(Y − X�̂)
=DK b̂=�: (A.2)

A.1. MSE smoothing parameter

We assume the conditional model shown in the second component of (9) with b
unknown but =xed. Covariate x is assumed to have compact support with density
bounded away from zero. Denoting W =(X ;Z) we postulate that FW =n(WTW)−1 is
a matrix of order O(1). The estimate f̂ � = {f̂(x1); : : : f̂(xn)}T is obtained by f̂ = S�Y
with

S� =W{F−1
W +D=(�n)}−1WT

as smoothing matrix, where D as block diagonal matrix diag(0p;DK), where 0p is a
matrix of zeros with p as number of columns in X . Subsequently we take advantage
of expansions of the type

{F−1
W +D=(�n)}−1 = FW − 1

�n
FWDFW +

1
(�n)2

FWDFWDFW + · · · : (A.3)

This allows for the bias B = E(f̂ ) − X� − Zb the approximation

BTB =
{

1
�2n

bTDKFZ:XDKb− 2
�3n2

bTDKFZ:XFZ:XDKb
}

{1 + O(n−1)}

and for the variance we get the decomposition

tr
{
Var(f̂ )

}
= 
2�

{
(p+ K) − 2

�n
tr(FZ:XDK) +

3
(�n)−2 tr(FZ:XDKFZ:XDK) + · · ·

}
:

Di<erentiating MSE(�) = BTB + tr{Var(f̂ )} leads to optimal MSE estimate given
in (6).

A.2. CP estimate

Using approximation arguments as above it is easy to see that
@
@�

tr(S�) =
1
�2n

tr(FZ:XDK) − 2
�3n2

tr(FZ:XDKFZ:XDK) + · · · :
Moreover, straightforward calculation shows

@
@�

(Y − f̂ )T(Y − f̂ ) = − 1
�3n

b̂TDKFZ:XDK b̂+
1
�4n2

b̂TDKFZ:XDKFZ:XDK b̂+ · · · :
Employing this to set the derivative of (7) to zero directly proves (8).
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A.3. REML estimate

Di<erentiation of (12) with respect to � yields

@lREML(�; �)
@�

=
(Y − X�)TV−1

� ZD−1
K Z

TV−1
� (Y − X�)


2�
(A.4)

− tr(V−1
� ZD−1

K Z
T) + tr{(ZTV−1

� X)(XTV−1
� X)−1(XTV−1

� Z)}: (A.5)

Replacing � in (A.4) by its estimate (4) allows to simplify (A.4) to b̂TDK b̂=�2. More-
over, simple matrix manipulation similar to (A.3) provides to expand (A.5) which
gives the leading components −K=�+ tr(FZ:XDK)=(�2n). This in turn proves (13).

A.4. Comparison

We assume now that model (9) holds. Considering estimate b̂ ≡ b̂n conditional on
b provides with simple asymptotic arguments

b̂n|b a∼N
{
(IK − 1

�n
FZ:XDK)b+O(n−2); 
2�FZ:X =n+O(n−2)

}
; (A.6)

so that with (9) the joint probability results as(
b

b̂

)
a∼N

((
0

0

)
; 
2�

(
�D−1

K �D−1
K − FZ:X =n

�D−1
K − FZ:X =n �D−1

K − FZ:X =n

))
=N(0;#n):

Solving the REML equation (A.4) and (A.5) up to the second asymptotic order and
de=ning zn = 
2� (�̂REML − �MSE) gives

zn = (bT; b̂T)




−DKFZ:XDK
tr(FZ:XDK)

0

0
DK

K − tr(FZ:XDK)=n



(
b

b̂

)
+ �=n

= : (bT; b̂T)A

(
b

b̂

)
+ �=n;

where �= tr(FZ:XDK)=(
2� K)− 3 tr(FZ:XDKFZ:XDK)=(
2� tr(FZ:XDK)). The focus is now
to calculate P(zn6 0). We tackle this problem using an Edgeworth expansion (see
e.g. McCullagh, 1987, pp. 147, 148) by approximating the distribution of zn by z∞ =
limn→∞ zn. Since

z∞ = bT
(

−DKFZ:XDK
tr(FZ:XDK)

+
DK
K

)
b
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we get with Imhof (1961)

z∞ = 
2b

K∑
k=1

(1=K − �k=
∑
l

�l)X2
k (A.7)

with X2
k as independent Chi-squared distributed variable with 1 degree of freedom and

�k as eigenvalues of FZ:XDK . Analogously we =nd zn =
∑2K

k=1 �(n)kX
2
k;�k + �=n where

Xk;�n are now noncentral independent Chi-squared variables with �k as noncentrality
parameter and �(n)k as characteristic roots of A#n. It is easy to see that �(n)k =O(n−1)
for K of the roots while the remaining K roots ful=ll �(n)k = �k{1 + O(n−1)} after
appropriate reordering. Moreover we =nd

E(zn) − E(z∞) = �=n (A.8)

and analogously di<erences in higher-order cumulants of zn and z∞ are of negligible
asymptotic order. This allows to write

P(zn6 0) = P(z∞6 0) − h(0)�
Kn

+O(n−2);

where h(·) denotes the density of z∞. With (A.7) we =nally obtain (14).
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