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SUMMARY

This paper considers the development of spatially adaptimeothing splines for the esti- 1
mation of a regression function with non-homogeneous shmess across the domain. Two
challenging issues that arise in this context are the etratuaf the equivalent kernel and the
determination of a local penalty. The roughness penaltyusetion of the design points in order
to accommodate local behavior of the regression functtds.dhown that the spatially adaptive
smoothing spline estimator is approximately a kernel esttim The resulting equivalent kernelz
is spatially dependent. The equivalent kernels for tradél smoothing splines are a special case
of this general solution. With the aid of the Green’s funetfor a two-point boundary value
problem, the explicit forms of the asymptotic mean and vaxéaare obtained for any interior
point. Thus, the optimal roughness penalty function is ioleth by approximately minimizing
the asymptotic integrated mean square error. Simulatismteeand an application illustrate the:s
performance of the proposed estimator.

Some key word€quivalent kernel; Green’s function; Nonparametric esgion; Smoothing splines; Spatially adap-
tive smoothing.

1. INTRODUCTION

Smoothing splines play a central role in nonparametric editting. Recent synopses include
Wahba (1990), Eubank (1999), Gu (2002), and Eggermont & ¢&iR{(2009). Specifically, con-
sider the problem of estimating the mean function from agggjon model

Yi = fO(tz) + U(ti)ei (Z = 17 cee ,’I’L),

where thet; are the design points d, 1], thee; are independent and identically-distributeds.
random variables with zero mean and unit variamﬁi,-) is the variance function, ang is
the underlying true regression function. The traditiomabsthing spline is formulated as the
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2 X. WANG, P. DU AND J. SHEN

solution f to the minimization of
1
- Z Tt )P+ [ O, )

whereX > 0 is the penalty parameter controlling the trade-off betwdnengoodness-of-fit and
smoothness of the fitted function. Smoothing splines havelid theoretical foundation and
are among the most widely used methods for nonparametnieggign (Speckman, 1981; Cox,
1983).

The traditional smoothing spline model has a major defigielitcuses a global smooth-
ing parameter\, so the degree of smoothness fgfremains about the same across the design
points. This makes it difficult to efficiently estimate fuinets with nhon-homogeneous smooth-
ness. Wahba (1995) suggested using a more general penatiyvibich replaces the constant
A by a roughness penalty functiox(-). Since\(-) is then a function of, the model becomes
adaptive in the sense that it accommodates the local betw@vig and imposes a heavier penalty
in the regions of lower curvature ¢f. Pintore et al. (2006) used a piecewise constant approx-
imation for A(-) but this requires specification of the number of knots, thet kocations, and
the values of\(-) between these locations. Storlie et al. (2010) discusset smmputational
issues on spatially adaptive smoothing splines. Liu & Gud @ refined the piecewise constant
idea and designed a data-driven algorithm to determine piienal jump locations and sizes
for \(-). Besides adaptive smoothing splines, other adaptive mdsthave been developed, in-
cluding variable-bandwidth kernel smoothing {Ner & Stadtmiller, 1987), adaptive wavelet
shrinkage (Donoho & Johnstone, 1994, 1995, 1998), locaginmohials with variable bandwidth
(Fan & Gijbels, 1996), local penalized splines (Ruppert &rGly 2000), regression splines
(Friedman & Silverman, 1989; Stone et al., 1997; Luo & WaHl887; Hansen & Kooperberg,
2002), and free-knot splines (Mao & Zhao, 2003). FurthelyeB&an adaptive regression has
also been reported by Smith & Kohn (1996), DiMatteo et alO®0) and Wood et al. (2002).
Nevertheless, adaptive smoothing splines have the ady@staf computational efficiency and
easy extension to multidimensional covariates using theosining spline analysis of variance
technique (Wahba, 1990; Gu, 2002). Further, the resultisdarptesent paper can be extended to
the more general L-spline smoothing (Kimeldorf & Wahba, 1;.9%0ohn & Ansley, 1983; Wahba,
1985). Also, the usual Reinsch scheme can be easily modifige tpresent case.

Let W3* = {f : f(™=1) absolutely continuous anti™ € L,[0, 1]}, where L,[0,1] is the
space of Lebesgue square integrable functions, endowéditeitisual norml| - || and inner
product(-, -)2. The method of adaptive smoothing splines firfds 173" to minimize the func-
tional

Za )i — F(E)1% + A / DL ()2, %)

where) > 0 is the penalty parameter, apd [0, 1] — (0, c0) denotes the adaptive penalty func-
tion; more properties gf will be stated later. Here, we incorporate a functign) into the rough-
ness penalty, which generalizes the traditional smootbplimes, where(¢) = 1. A two-point
boundary value problem technique has been developed tdfraslymptotic mean squared error
of the adaptive smoothing spline estimator with the aid ef @reen’s function. Thus the opti-
mal roughness penalty function is obtained explicitly bpragimately minimizing the asymp-
totic integrated mean squared error. Asymptotic analysisaalitional smoothing splines us-
ing Green’s functions was performed by Rice & RosenblatBg9Silverman (1984), Messer
(1991), Nychka (1995), and Eggermont & LaRiccia (2009); atemsion to certain adaptive
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splines was made in Abramovich & Grinshtein (1999). In casitto these results, the current pa-
per develops a general framework for asymptotic analysaslaptive smoothing splines, yielding
a systematic, yet relatively simpler, approach to obtaimiosed-form expressions of equivalent
kernels for interior points and to asymptotic analysis. @stimate possesses the interpretation
of spatial adaptivity (Donoho & Johnstone, 1998), and tha@vedent kernel may vary in shape
and bandwidth from point to point, depending on the data.

2. CHARACTERIZATIONS OF THE ESTIMATOR 80

In this section, we derive the optimality conditions for g@ution that minimizes the func-
tional (2). Letw,(t) = n~1 Y ", Z(t; < t) whereZ is the indicator function, and let be a
distribution function with a continuous and strictly pasgt density functiong on [0, 1]. For a
function g, define||g|| = sup,c( 1] 19(¢)| and subsequent norms likewise. gt = [jwy, — wl.
If the design points; are equally spaced),, = O(n~!) with ¢(t) = 1 fort € [0,1]. If t; are in- &
dependent and identically distributed regressors frons#ilution with bounded positive den-
sity ¢, then D,, = O{n~'/2(loglogn)'/?} by the law of the iterated logarithm for empirical
distribution functions.

Let i be a piecewise constant function such thét) = y; (i = 1,...,n). For anyt € [0, 1]
andf € L;[0,1], define

t

ll(f,t):/o J_Q(S)f(s)dw(s), lk(f,t):/O le—1(f, s)ds,

and
t

t
ll(f7t) = / U_Q(S)f(S)dwn(S), lk(f7t) = / lk—l(f? S)dS (2 < k < m)
0 0
THEOREM 1. Necessary and sufficient conditions jbE W3 to minimizey in (2) are that

(=1)™ X p(t) U™ (&) + Ln(f,t) = Ln(h,t),t € [0,1], (3)

almost everywhere, and %
(f,1) =le(h, 1) (k=1,...,m). (4)

Bothi,(f,t) andiy(h,t) are piecewise constantinThereforel,,, (h,t) — I,,,(f, ) is a piece-
wise (m — 1)th order polynomial. Thus, Theorem 1 shows thét) f(™)(t) is a piecewise
(m — 1)th order polynomial. The exact form (fTWiII depend on additional assumptions about
p(t). For example, Pintore et al. (2006) assum#t) to be piecewise-constant with possible
jumps at a subset of the design points. Then, the optimaligolis a polynomial spline of order o
2m. It is well-known that the traditional smoothing spline is@ural spline of orde2m, which
corresponds to the case here whet) = 1.

3. ASYMPTOTIC PROPERTIES OF THE ESTIMATOR

We establish an equivalent kernel and asymptotic distdbudf the spatially adaptive smooth-
ing splines at interior points using a two-point boundaryiggroblem technique. The key idea isw
to represent the solution to (3) by a Green’s function. It kél shown that the adaptive smoothing
spline estimator can be approximated by a kernel estimasorg this Green’s function.
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DenoteRy(t) = l(f,t) — In(f,t) (k = 1,...,m). Specifically, wherk = m, it follows from
Theorem 1 that

Rin(t) = (=1)"X p(8) S (1) + b (f,8) = L (B, ).
Write () = o2(t)/q(t). Thus,l,,,(f,t) solves the two-point boundary value problem

(1Nt L0 (.0} 4 bl 1) = ) + Rut), (B)
subject to the&m boundary conditions from (4):

The solution to (5) can be obtained explicitly with the aidled Green'’s function. For readers
unfamiliar with Green’s functions, operationally speakiif P(t, s) is the Green'’s function for

(=)™ () {r ()™ ()} ™ +u(t) = 0, ()

thenfO (t,8){Im (R, 5) + Ry (s)}ds will solve (5). This, together with the boundary conditions
(6), ylelds the solution to the two-point boundary valueljbemn in (5) and (6). The derivations of

the Green'’s function and discussions of the boundary conditare given in the online Supple-

mentary Material. Specifically, I€C}(t),k = 1,...,2m} be2m linearly independent solutions

for the homogeneous differential equation

(A 00 T L) T (£} + bl ft) =

Then,lm(f, t) in (5) can be represented as

1 1 2m
lf.) = [ PESGuo)is + [ PR s+ Y aCit. @
0 0 k=1
where the last term is due to the boundary conditions anddbké#icientsa,(k =1,...,2m)

are shown to be unique and stochastically bounded for alicgrftly small A in the Sup-
plementary Material. Equation (8) can be decomposed immetiparts: the asymptotic mean
fo m(fo,s)ds; the random componeny”0 t,8)lm(h — fo,s)ds; and the remain-
dertermF( ) = 32 arCr(t) + [1 P )ds,whereRm(t) = Im(f = fo,t) = Im(f —
fo,t). It will be shown that| R,,|| has a smaller order and the remainder term is negligiblegin th

asymptotic analysis. Taking the-th derivative point-wise on both sides of (8) gives the @lic
representation of the adaptive smoothing spline estimatos gives

A am

T ft) = — 1Pt Lo (f d+d—m/1P(t I (h = fo,s)ds +T™ (1), (9)
r0f0) = G [ P s+ T [P = fo s+ T,

We now introduce the main assumptions of this paper:

Assumptiorl. The functionsp(-), ¢(-), ando(-) are (m + 1)-times continuously differen-
tiable and strictly positive.

Assumptior?. The functionf; is 2m-times continuously differentiable.

Assumptior8. The smoothing parameter— 0 asn — oo. Denote

A, = Dnn_1/2/\_(1+m)/(2m)max [{log(l/k)}l/z, (log log n)1/2].
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AssumeAl,, — 0 asn — cc. 120
Assumptiort. The random errors; have a finite fourth moment.

Assumption 3 ensures that the smoothing parametends to zero not too quickly. In par-
ticular, it encompasses the cases of equally spaced dearipbles and of independent and
identically-distributed regressors from a distributioithhbounded positive density. In the for-
mer case,D,, = O(n~') and in the second cas®,, = O(n~/2(loglogn)/?). The optimal s
choice of\ discussed subsequently is of order™/(*m+1) and it is easy to check that it satis-
fies Assumption 3.

THEOREM2. Assume that Assumptiohs4 hold. Let3 = \~1/(2>™)_ For any givert € (0,1),
the adaptive smoothing spline estimafocan be written as

F8) = Jole) + 2 (1" {0 £ 037+ o) + - Z((f)) J(t.t)er (10)
i=1 1\

+O(B™ A, + O(B™)e oW
uniformly in A, whereJ (¢, s) is given in (L1). 130

Remarkl. Eggermont & LaRiccia (2006) were the first to show in full gexdigy that the stan-
dard spline smoothing corresponds approximately to snrapthy a kernel method. A simple
explicit formula of the equivalent kernel for ait, denoted byK (¢, s), is given by Berlinet &
Thomas-Agnan (2004). For interior points, the kerAgls of the formK (¢, s) = BL(B|t — s|)
for some functionZ, andL(| - |) is a2m-th order kernel or{—oo, co). In particular, the shape of s
K(t,-) is defined byL(-) and is the same for differemt For example, the closed form expres-
sions for the first two equivalent kernels are:

1 i

m=1: L(|t|) = 56_

m=2: L(t|) = 23% e—lt\/21/2{ cos <2‘1L/‘2> + sin <2‘1L/‘2> }7

1 1 3U20¢\ 32 312t
m=3: L(|t]) = EG_M + e_%m{ 6005( 2| |) + G sin( 2| |> }7

m=4: L(|t|) = e—0'9239|t‘{ 0-2310 cos (0-3827|t]) + 0-0957 sin(0-3827]¢|) }

+ 03827111 { 0-0957 cos(0-9239|t|) + 0-2310sin (0-9239]¢|) }

Theorem 2 indicates that the spatially adaptive smoothitigesestimator is also approximately
a kernel regression estimator. The equivalent kestie|ls) is the corresponding Green’s func-
tion. As shown in the Supplementary Material, 140

J(t,s) = Bo(s)Qp(s)L{BIQs(t) — Qs(s)[}, (11)

where

Qa(t) = /Ot {r(s)p(s)}_lmm){l + 0(5—1)}ds

is an increasing function af and||o|| = 1 + O(3~!). This shows that the shape £ft, -) varies
with ¢. Our estimator possesses the interpretation of spatigdtiadg (Donoho & Johnstone,
1998); it is asymptotically equivalent to a kernel estimatith a kernel that varies in shape and
bandwidth from point to point.
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Remark2. The numbers—! in (11) plays a role similar to the bandwidkthin kernel smooth-

ing. Theorem 2 shows that the asymptotic mean hagbiag” ! \r(t) {p(t)fém) (t)}(m) , which
can be negligible if\ is reasonably small. On the other hand;annot be arbitrarily small since
that will inflate the random component. The admissible rafioge\ is a compromise between
these two.

COROLLARY 1. Givenp(-) andr(-), and assuming Assumptiofis4, if \ = n—27/(4m+1),
then, for anyt € (0,1), n2™/Um+D { f(+) — f,(t)} converges to
N0 O{p f5™ O}, Lo () @ p(e) =] (12)

in distribution, whereLy = [0 L?(|t|)dt.

The proof of Corollary 1 is given in the Supplementary MatkThe asymptotic mean squared
error of the spatially adaptive smoothing spline estimataf ordern—4™/(4m+1) ‘which is the
optimal rate of convergence given in Stone (1982).

4. OPTIMAL SELECTION OFp
The optimal\ andp are chosen to minimize the integrated asymptotic mean squaror

1 m L 3 B
/0 (RO 5" ) + =o' pe) W far, (13)

which is in fact a function of\p(t). We choose the optimal to be \> = n=2™/(4m+1) The
optimal roughness penalty functigit) minimizes the functional

I(p) = /0 PO HAOR Y] + LoV ey Ve L ae, (1a)

Without any further assumptions, the above minimizatiosbfgm does not have an optimal

solution, since any arbitrarily large and positive funatjpwith { p(t) fém) (t)}(m) = (0 on any
sub-interval of[0, 1] will make II(-) arbitrarily small. To deal with this problem, we firstimpose
a technical assumption ofa.

Assumptiorb. The set\' = {¢ € [0,1] : fom) (t) = 0} has zero measure.

Letu(t) = {p(t) f{™ ()}, z(t) = p(t)£{™ (¢), and D™ be them-fold integral operator.
Thenz(™)(t) = u(t) and
z(t) = (D™ u)(t) + 6" (t)zo, (15)
for 6(t) = (1,¢,¢2/2!,...,t™ 1 /(m — 1)!)" and somez, € R™. Moreover, we can define

z(t)/ fém) (t) to be any positive constant for alle ' where fém) (t) = 0. This definition is
assumed in the subsequent development. Hence, the fualdiigm) in (14) becomes

! 2 2 ! 1-1/(2m) 2(t) e
J(u, o) :/o r(t)u (t)dt—i—/o Lor(t) {W} b

wherez(t) is defined by(u, zo). We then introduce another technical assumptior:@, or
essentially orp.



Spatially adaptive smoothing splines 7

Assumptior6. There exist positive constantsandes such that|zo|| < p andz(t)/fém) (t) >
e for all . And {z(t)/fom) (t)}_l/@m) is Lebesgue integrable d6, 1].

Consider the following set ii2[0, 1] x R™,

175

P = {(u,:ﬂo) € Ly[0,1] x R™ : ||| < p, 2(t)/£™(t) > ¢ forallt € [0,1], and
{z(t)/fo(m) (t)}_l/(zm) is Lebesgue integrable g, 1] },

wherez(t) is given in (15) dependent dm, (). Further development in the Supplemental Mate-
rial establishes the following theorem that the objectiwgctionalJ attains a uniqgue minimum in
P. In fact, under the additional Assumptions 5 and 6, the #dirst shows the existence of aneo
optimal solution. Moreover, since the objective functibdas strictly convex and the constraint
setP is convex, the uniqueness of an optimal solution also fallow

THEOREM 3. Under Assumptions, 2, 5and®6, the optimization problerinf , ,yep J(u, 7o)
has a unique solution if®.

Remark3. Given the optimal solutiou*, x*), z(,+ ,+)(t) is bounded or0, 1] due to its abso- s
lute continuity. The lower boundin Assumption 6 ensures that the optinpas bounded below
from zero. However, there is no guarantee that the optpmalbounded above due to the pos-
sibility for small values oﬂfém)\. To avoid this problem, one may impose an additional upper
bound constraint in Assumption 6. The proof of existencewamdueness remains the same.

5. IMPLEMENTATION 190

Obtaining an explicit solution of (14) is difficult. Motivatl from Pintore et al. (2006), we con-
sider approximating by a piecewise constant function such th@) = p; fort € (r;_1,7;],j =
0,...,8+1.Hererp =0,75+1 = 1,and0 < 7 < --- < 7¢ < 1 are interior adaptive smooth-
ing knots whose selection will be described below. When titegiral in (14) is taken ignoring
the non-differentiability at the jump points ( = 1,...,.5), we obtain

o i m — m i
> [p§ [ Pouem oL, |

r(t)l—l/@m)dt] :
j=1 j—1 -1
Therefore, the optimad; is

2m/(4m+1)

Lo [T r(t)=1/Cmgy
IH . j=1,...,84+1. (16)

am [T ({5 (02t

Unfortunately, the optimal values for thg depend onr(t) and the2m-th derivative of the
underlying regression functiofy(¢). We replace them by estimates in practice.

pj =

Remarld. Rigorously speaking, such a step-function approximatigni$ not a valid solution
to (14) due to non-differentiability. However, simulatiogeem to suggest that such a simple
approximation can yield good results. Furthermore, one madify suchp, for example, to
make it satisfy Assumption 2. In a sufficiently small neigttimod of each jump point, one can
replace the steps by a smooth curve connecting the two stepstisat the resulting function
satisfies Assumption 2. Hence the piecewise congtaah be viewed as a simple approximation
to this smooth version gf. 200
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We now describe the detailed steps for approximate impléatien. The first step is to se-
lect the interior smoothing knots (j = 1,...,S). An abrupt change in the smoothness of the
function is often associated with a similar change in thed@tnal probability density ofy
givent. For example, a steeper part of the function often comes sygthrser data, or smaller
conditional probability densities af givent. Hence, we first use thescden function in the R
packagegss to estimate the conditional probability densitiesyofivent on a dense grid, say
s = k/100 (k = 1,...,100). Then with a givers, we select the top' s, where the conditional
probability density changes the most fromto sx1. A more accurate but considerably more
time-consuming way of selecting the smoothing knots is afyitree search algorithm proposed
in Liu & Guo (2010).

Estimation ofo?(t) was first studied by Miiller & Stadtmiller (1987). In thispes, we use
the local polynomial approach in Fan & Yao (1998); see Hall &1©ll (1989), Ruppert et al.
(1997), and Cai & Wang (2008) for other methods. This prowithee weights for obtaining a
weighted smoothing spline estimate pft), whose derivative yields an estimate g7 (t).
The functiong(t) can be replaced by an estimate of the density functiagn @f=1,...,n). All
these computations can be conveniently carried out usm@tpackagesocpol andgss.

Ideally, the optimap; computed as above work well. However, similar to the findm§torlie
et al. (2010), we have found that a powered-up ver&}ﬁrﬁor some~y > 1 can often help in

practice. Intuitively, this power-up makes up a bit for tielar-estimated differences j>™ (t)
across the predictor domain.

For the tuning parameters and~, we considerS € {0, 2, 4,8} and~y € {1,2,4}. Theoreti-
cally a largerS might be preferred due to the better approximation of suep &tnctions to the
real function. However, as shown in Pintore et al. (2006) kind& Guo (2010), anS greater
than 8 tends to overfit the data. The optionsfavere suggested in Storlie et al. (2010). In tradi-
tional smoothing splines, smoothing parameters are seldnt the generalized cross-validation
(Craven & Wahba, 1979) or the generalized maximum likelthestimate (Wahba, 1985). As
pointed out in Pintore et al. (2006), a proper criterion felesting the piecewise constapi:)
should penalize on the number of segmentg.dfhe generalized Akaike information criterion
proposed in Liu & Guo (2010) serves this purpose, which israfiged version of the gener-
alized maximum likelihood estimate whefeis penalized similar to the degrees of freedom in
the conventional Akaike information criterion. In this gajpwe will use the generalized Akaike
information criterion to select and-~y.

Once the piecewise constant penalty funciias determined, we compute the corresponding
adaptive smoothing spline estimate as follows. By the sgter theorem (Wahba, 1990), the
minimizer of (2) lies in a finite-dimensional space of fuocis

n m—1
F&) =D aK,(tit) + > dig;(t), (17)
i=1 §=0
wherec; andd; are unknown coefficients;(t) = t//;j! for j =0,...,m — 1, and K, is the

reproducing kernel function whose closed form expressairis;, -) with a piecewise-constant
p are given in Section 2.2 of Pintore et al. (2006). Plugging) (ibto (2), we solve fotc =
(c1,...,cp)T andd = (dy, ... ,dn—1)" by the Newton—Raphson procedure with a fiXxedHere
A can be selected by the generalized cross-validation oréherglized maximum likelihood
estimate with the adaptive reproducing kernel function.
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6. SMULATIONS

This section compares the estimation performance of diftesmoothing spline methods.
For traditional smoothing splines, we used the cubic smogtisplines from the function
ssanova in the R packageggss and the smoothing parameter was selected by the gener-
alized cross validation score. For the spatially adaptveahing splines in Pintore et al.
(2006), we used an equally-spaced five-step penalty fundétbowing their implementation
and the optimal penalty function was selected to minimize generalized cross validation
function (19) in their paper. For the Loco-Spline in Stoieal. (2010), we downloaded the
authors’ original program from the site of the Journal of @omational and Graphical StatisticSzso
http://anstat.tandfonline.confdoi/suppl/10.1198/]cgs.2010. 09020/
suppl filel/r-code. zi p. For the proposed adaptive smoothing splines, we used 1
and cubic smooth splines to compute the optipye.

Two well-known functions with varying smoothness on the domwere considered under the
modely; = f(t;) + €; with ¢; ~ N(0,0?). We usedh = 200 andt; = i/n (i =1,...,n)inall s
the simulations and repeated each simulation on 100 rarydgenlerated data replicates. The in-
tegrated square errtfg{f(t) — fo(t)}2dt and point-wise absolute errorstat 0-2,0-4,0-6,0-8

were used to evaluate the performance of an estiniat® visualize the comparison, we also
selected for each example and each method a data replictitehsi median performance as
follows. The function estimates from each method yielde@ itiegrated square errors. Afteke
ranking them from the lowest to the highest, we chose the bd#grated square error and its
corresponding data replicate to represent the medianrpeafice. We then plotted the function
estimates from these selected data replicates in Fig. le@rtgpare the median estimation per-
formances for different methods. To assess variabilitysitingation, we also superimposed in
these plots the point-wise empirical 0.025 and 0.975 glesntif the 100 estimates. 265

We first consider data generated from the Heaviside fungtieh= 51j;-.—(.;) with o = 0-7.
Based on the error summary statistics in Table 1, all the tagamethods outperform the tra-
ditional smoothing splines, with our method and that in &hatet al. (2006) displaying clear
advantages in all the error measures. Furthermore, ourothéidd the smallest mean integrated
square error. This advantage is better illustrated by this pt Fig. 1. While the median estimatesr
from all the three adaptive methods tracked the true funateasonably well, the Loco-Spline
estimates show greater variability than the other two adaptethods in estimating the flat parts
of the Heaviside function. Further, our method does the jobsh tracking down the jump. The
estimate of Pintore et al. (2006) can oscillate around thmpjaf the Heaviside function, probably
because the equally-spaced jump pointsofeuggested in their paper sometimes have difficulty
in characterizing the jump in the true function. This echibesfinding in Liu & Guo (2010) that
the jump locations op also need to be adaptive, a concept adopted in our method.

The second example is the Mexican hat functfdh) = —1 + 1-5¢ + 0-2¢¢.02(t — 0-6) with
o = 0-25, wheregpg.02(t — 0-6) is the density function oV (0-6,0-022). From Table 1 and Fig. 2,
the estimates from our method and the Loco-Spline have ciitmpeperformance and both zs
outperform the traditional smoothing spline and those afd?e et al. (2006). The estimates of
Pintore et al. (2006) again suffer close to the hat.

For the estimates plotted in Fig. 1-2, we also plot the eséichipg penalties for all the meth-
ods in Figure 3. In general, the penalty functions from theedahadaptive methods track the
smoothness changes in the underlying functions reasomaiily 285
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Table 1.Comparison of integrated square errors and point-

wise absolute errors for various estimates. Values, divide

by 100, are empirical means and standard deviations (in
brackets) based on 100 data replicates.

Method ISE PAE(®@) PAE(04) PAE(06) PAE(08)
Heaviside function

ss 18(7) 15(11) 17(14) 16(14) 16(12)
PSH 5(2) 6(5) 6(5) 7(5) 7(5)
Loco 7(3) 10(8) 13(12) 11(10) 12(12)
ADSS 2(2) 7(5) 6(5) 6(5) 7(6)
Mexican hat function
SS 66(6-2) 8(6) 8(8) 96(72) 8(6)
PSH 11(0-3) 4(3) 8(5) 35(11) 8(5)
Loco 06(0-3) 4(4) 5(4) 13(10) 5(4)
ADSS 06(0-2) 4(3) 4(3) 15(10) 6(4)

ISE, integrated square error; PAE, point-wise absolutere8S, smooth-
ing splines; PSH, splines in Pintore et al. (2006); Loco, d-&plines;
ADSS, adaptive smoothing splines in this paper

), 1(t), CI

), 1(t), CI

Fig. 1. Estimates of the Heaviside function for the data
replicates with median integrated square errors. The plot-
ted curves are the true function (solid line), the spline es-
timate (solid line), and the point-wise empirical 0.025 and
0.975 quantiles (dotted lines). Top left: traditional srieo
ing spline estimate. Top right: estimate from the method
in Pintore et al. (2006). Bottom left: Loco-Spline esti-
mate. Bottom right: proposed adaptive smoothing spline
estimate.
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1), ci

f(0), f

N

f(t), f(t), ClI

1), ci

f(0), f

N

f(t), f(t), CI

Fig. 2. Estimates of the Mexican hat function for the data
replicates with median integrated square errors. The plot-
ted curves are the true function (solid line), the spline es-
timate (solid line), and the point-wise empirical 0.025 and
0.975 quantiles (dotted lines). Top left: traditional sifeo
ing spline estimate. Top right: estimate from the method
in Pintore et al. (2006). Bottom left: Loco-Spline esti-
mate. Bottom right: proposed adaptive smoothing spline
estimate.

7. APPLICATION

In this section, we apply the proposed adaptive smoothitigespto an example on elec-
troencephalograms of epilepsy patients (Liu & Guo, 20183viBus research (Qin et al., 2009)
has shown that the low voltage frequency band 26-50Hz isitapbin characterizing electroen-
cephalograms and may help determine the spatial-temputiation of seizure. The left panel of s
Figure 4 shows the raw time-varying log-spectral band paf@6-50Hz calculated every half
second for a 15-minute long intracranial electroencemralo series. The sampling rate was
200Hz and the seizure onset was at the 8th minute (Litt et0&I1R2 The raw band powers are
always very noisy and need to be smoothed before furtheysisallhe middle panel shows the
reconstructions from traditional smoothing splines ardpioposed adaptive smoothing spliness
We also tried the Loco-Spline but the program exited due inguar matrix error.

Traditional smoothing splines clearly under-smooth thee pnd post-seizure regions and over-
smooth the seizure period, because a single smoothing pteais insufficient to capture the
abrupt change before the onset of the seizure. Our estimawetkes out the noise on both
ends but keeps the details before the onset of seizure. tinyar, we see a fluctuation in power.o
starting from a minute or so before the onset of the seizunigiwmay be a meaningful predictor
of seizure initiation. The band power then increases shapkhe beginning of the seizure.
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Fig. 3. Estimated log penalties for simulation examples
in Fig. 1-2. The log penalties are for traditional smooth-
ing splines (solid grey lines), the method in Pintore et al.
(2006) (dashed steps), the Loco-Spline (dotted lines), and
the proposed method (solid steps). Left: Heaviside. Right:
Mexican hat.
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Fig. 4. EEG data example. Left: Raw log spectral

band power. Center: Reconstructions from the traditional

smoothing splines (dashed) and the proposed adaptive

smoothing splines (solid). Right: Estimated log penalties

from the traditional smoothing splines and the proposed
adaptive smoothing splines.

Around the 10th minute at the end of the seizure, the band pdveps sharply to a level even
lower than the pre-seizure level, an indication of the sepgipn of neuronal activities after
seizure. Afterwards, the band power starts to regain. Bdtillifails to reach the pre-seizure level
even at the end of the 15th minute. These findings concur witketin Liu & Guo (2010).

The proposed method took less than 10 minutes for the whalgsis, compared with 40-50
minutes for the method in Liu & Guo (2010). This is not suripigs since the latter not only
needs a dense grid search to locate the jump points but alsodaod initial step sizes.
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SUPPLEMENTARY MATERIAL

Supplementary Material available Biometrikaonline includes the proofs of Theorems 1-3
and Corollary 1, and the detailed derivation of the Greamstion.

APPENDIX

In this appendix, we provide outline proofs of Theorems 1 anéor the full proofs of these two sz
theorems and Corollary 1, we refer the readers to the Sugpitry Material.
Outline Proof of Theorert. For anyf, g € W3* andd € R,

Ul +89) = 07) =2002(7.9) + 8| [ POdn® + 2 [ pOs™ @], A
0 0
where
Pi(f,9) = / o2 (O){f(t) — h(t)}g(t)dwn (t) + A / p(t) £ ()™ (t)dt. (A2)
0 0

LEmMMA Al. The functionf € WJ* minimizes)(f) in (2) if and only ifi); (f, g) = 0 forall g € WJ".

Let g(t) =t*(k =0,...,m — 1) in (A2). An application of Lemma Al shows that ff minimizes
¥(f), then

/1 o2 (O{F() ~ h()} Fdwn() =0 (k= 0,1,....m —1).
0

We first have

1
(f.1) = li(h, 1) :/O o2 (O){f(t) = h(t)}dwn(t) = 0.

Further,

b 1) — Do, 1) = / / "o (1) — h(t) i ()ds = / o2 F(t) — h(t)} £ dwn(t) = 0.

Similarly, Zk(f,l) = Zk(h,l) fork = 1,...,m. 325
LEMMA A2. If f € Wi~ satisfiedy,(f,1) = lx(h,1), k =1,...,m, thenfor allg € W",
1
nlf.) = [ ea() g™ @ (A3)
0
where
Ga(f) = A p(t) FU (1) + (1) {ln(f,1) = (b, 1)} (A4)

Let BT = {t €[0,1] : ¢o2(f) >0} and B~ = {t € [0,1] : ¢2(f) < 0}. Definegﬂrm)(t) = —Ip+(t)
andg(,m)(t) = Ip-(t), wherel is the indicator function. Sincé- (f,g) = 0 for all g € W3, we have
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s P1(f,94) <0andyi(f,g-) <0, unlessB™ and B~ are of measure zero. This shows thig{ f) = 0
almost everywhere. .
Outline Proof of Theoren2. It follows from (9) thatr=1(¢)f(t) = Vi (t) + Va(t) + Va(t) + Va(t),

where
dm [t . .
dtm/ Pt S an ) S, () dt—m P(t,S){lm(h,S)—lm(fo,S)}dS,
5 Vit dtm/ P(t,$){lm(f = fo,8) — lm(f — fo,8)}ds, Vi(t Zakc””

Let f minimize the functional

1
[ o) = fus)y?ds + 4 / ()£ ()2
0
Similar to Theorem 1, we have

(=)™ o) f™ (#) + L (F £) = Ln(fos8), (AS)

and
fit) = /01 P(t, 8)lm(fo, s)ds. (AB)

HenceV; (t) = r~1(t) f(t). Taking themth derivative of both sides of (A5), we get
(=1 Mp@) f™ @Y™+ () f(8) = () fo(t).

Recall thatf, is 2m times continuously differentiable ariti= A—'/(2™) Combining this with (A6), it is
easy to show thaf®) (t) — f{¥(t) asp — oo for k = 1, ..., 2m. Therefore,

Vi(t) = (6 fo(t) + (1) A p() ™ (£)} ™) + o(N).

PROPOSITION Al. Assume that a functio(t, s) satisfies(—l)maasm J(t,s) = Btm - P(t,s), t,s€

[0,1]. ThenJ(t, s) + Zzl:}l(—l)k(k+1(s)jk (t) = (r(s)/r(t)J(t,s), where

1 1 1 B ok
s) :/ / / dsg—1dsg—o---ds1, Jg(t) = Do J(t,s) |s=1,
s Sk—3 JSk—2

andJ(t, s) is the Green’s function for

(=1)"Ar(0){p(£)u™ ()} + u(t) = 0. (A7)
By applying Proposition A1, we have, for any (0, 1),

1 mo_
Va(t) :/O (-1)m§8—mj(t, i (B — fo, 5)ds
1 m—1
- / J(t, $)d (i (h — fo, )} + (~1)™ P ot (b — fo 1)
0 k:l

_! Z T((?))J(t,ti)al(ti)ei + higher order terms.
r
=1

Eggermont & LaRiccia (2006) established the uniform errourdds for regular smoothing splines. We
adopt the same approach as in Eggermont & LaRiccia (200@daptive smoothing splines; the details
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are omitted here. Foxr < (n =" logn)?™/(1+4m) we obtain

”f_fOH:O AL/ (2m)

{max (log %, log log n) }1/2]

Therefore||Vs|| < O(8™)D,||f — foll. Finally, it is shown in detail in the Supplementary Matetieat o
V4|l is of orderO(5™) exp[—BQs(t){Qs(1) — Q(t)}], and thus a negligible term in the asymptotic

expansion of ~1(¢) f(t). This completes the representation for
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