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Course Notes: Day 27

Geometry of Cubic Bezier & Hermite Patches

David L. Finn

Today, we want to look at the geometry of placing the control points for bicubic Bezier
patches. Specifically, how does the positions of the control points shape the surface. In
explaining this, we will look at the generic structure of a bicubic Hermite patch. First, we
develop formulas for the derivatives of Bezier patches. From this, we can show that knowing
the first derivative vectors and the twist vector at each of the corner points of a patch allows
you to construct the patch. This gives the Hermite form of a bicubic patch, rather than the
Bezier form of a bicubic patch. The twist vector in essence is the mixed partial derivative
of the vector valued function X(u, v).

27.1 Derivatives of Bezier patches

Given a control net for a Bezier patch (a grid of control points) pi,j . The Bezier patch is
given by

X(u, v) =
m∑

i=0

n∑

j=0

βm
i (u)βn

j (v) pi,j .

We can take the partial derivatives with respect to u and v to get

∂X

∂u
=

m∑

i=0

n∑

j=0

(βm
i (u))′ βn

j (v) pi,j

and
∂P

∂v
=

m∑

i=0

n∑

j=0

βm
i (u) (βn

j (v))′ pi,j .

Recalling the relations between the derivatives of the Bernstein polynomials,

d
dt (βn

i (t)) =
(

n
i

) (
i ti−1(1− t)n−i − (n− i) ti(1− t)n−i−1

)

= n

(
n− 1
i− 1

)
ti−1(1− t)n−i − n

(
n− 1

i

)
ti(1− t)n−1−i

= n
[
βn−1

i−1 (t)− βn−1
i (t)

]
,

we have
∂X

∂u
=

m∑

i=0

n∑

j=0

m
[
βm−1

i−1 (u)− βm−1
i (u)

]
βn

j (v) pi,j
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and
∂X

∂u
=

m∑

i=0

n∑

j=0

nβm
i (u)

[
βn−1

j−1 (v)− βn−1
j (v)

]
pi,j .

This gives a formal method for differentiating a Bezier patch from the functional represen-
tation of the Bezier patch.

We can express these forms of the derivatives in terms of first differences of the control net.
The difference being that we have two first differences, one for each direction in the grid.
We have a first difference in the u-direction (the i index)

∆1,0pi,j = pi+1,j − pi,j ,

and a first difference in the v-direction (the j index)

∆0,1pi,j = pi,j+1 − pi,j .

By rearranging the sums, we have

∂P

∂u
=

m−1∑

i=0

n∑

j=0

mβm−1
i (u) βn

j (v)∆1,0pi,j

and
∂X

∂u
=

m∑

i=0

n∑

j=0

n βm
i (u)βn−1

j (v)∆0,1pi,j .

Notice that each derivative is also a Bezier patch. The grid on which the Bezier patch is
defined is smaller and consists of vectors, as for Bezier curves.

To take the second derivatives of a Bezier patch, we proceed in a similar manner. As with
Bezier curves, since the derivative of a Bezier patch is a Bezier patch, we can use the above
methods to define the second derivatives. The second derivatives are

∂2X

∂u2
=

m−2∑

i=0

n∑

j=0

m(m− 1)βm−2
i (u)βn

j (v)∆2,0pi,j

and
∂2X

∂u∂v
=

m−1∑

i=0

n−1∑

j=0

mnβm−1
i (u)βn−1

j (v) ∆1,1pi,j

and
∂2X

∂v2
=

m∑

i=0

n−2∑

j=0

n(n− 1)βm
i (u) βn−2

j (v)∆0,2pi,j

where ∆k,lpi,j are the appropriate differences. The differences above are given by

∆2,0pi,j = ∆1,0pi+1,j −∆1,0pi,j

= pi+2,j − 2pi+1,j + pi,j

and
∆1,1pi,j = ∆1,0pi,j+1 −∆1,0pi,j

= ∆0,1pi+1,j −∆0,1pi,j

= pi+1,j+1 − pi,j+1 − bi + 1, j + pi,j

and
∆0,2pi,j = ∆0,1pi,j+1 −∆0,1pi,j

= pi,j+2 − 2pi,j+1 + pi,j .

We can proceed to take higher derivatives in a similar manner.
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Figure 1: AAA

27.2 Derivatives of Bezier Patches at Corner Points

Let’s look at the above formulas at corner points (u = 0, v = 0), (u = 0, v = 1), (u = 1, v =
0), (u = 1, v = 1). The important facts to remember are that βM

0 (0) = 1, βM
i (0) = 0 for

i > 0, and βM
M (1) = 1, βM

i (1) = 0 for i < M . This means, that at the corner (u = 0, v = 0)
we have

∂X

∂u

∣∣
(0,0)

= m (p1,0 − p0,0)

∂X

∂v

∣∣
(0,0)

= n (p0,1 − p0,0)

∂2X

∂u2

∣∣
(
0, 0) = m(m− 1) (p2,0 − 2p1,0 + p0,0)

∂2X

∂u∂v

∣∣
(
0, 0) = mn (p1,1 − p1,0 − p0,1 + p0,0)

∂2X

∂v2

∣∣
(
0, 0) = n(n− 1) (p0,2 − 2p0,1 + p0,0) .

(27.2.1)

The other corners are handled similarly.

The observation from (27.2.1) is that knowing the corner point X(0, 0) = p0,0, the first par-
tial derivatives at the corner, and the mixed partial derivative at the corner, it is possible
to determine the control points p1,0, p0,1 and p1,1. The same manipulations can be done
at the other corners, and thus if you know at each corner point of patch, the first partial
derivatives (two vectors), and the mixed partial derivative (the twist vector) you can recon-
struct a bicubic Bezier patch. When you give this information, you have a bicubic Hermite
patch. This is the analogue of a Hermite curve.

27.3 Geometric Structure of the Control Net for a Bicubic Bezier
Patch

The above derivations provide the geometric structure of the control points. The control
points p0,0, p1,0 and p0,1 specify the tangent plane to the patch at the point p0,0. Moreover,
the vectors p1,0 − p0, 0 and p0,1 − p0,0 control the tangent vectors of the edges of the patch
at p0,0, see diagram below.

The geometric meaning of the twist vector is harder to understand. First, let’s consider
why the mixed partial derivative of a parametric surface is called a twist vector. The mixed
partial derivative at u = 0, v = 0 is the rate of change of the tangent vectors ∂X

∂u

∣∣
(0,v)

as

v varies and the rate of change of the tangent vectors ∂x
∂v

∣∣
(u,0)

as u varies. This is called a
twist vector because when the mixed partial derivative is zero the tangent plane at (0, 0) is
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Figure 2: Twist Vectors and Twisting of Tangent Planes

essentially given by either the pair of lines

X(0, 0) + s
∂X

∂u

∣∣
0,0

X(0, v) + s
∂X

∂u

∣∣
0,v

or
X(0, 0) + s

∂X

∂v

∣∣
0,0

X(u, 0) + s
∂X

∂v

∣∣
u,0

for small values of u and v, as both pair of lines are essentially parallel. Moreover, when
the twist vector, ∂2X/∂u∂v, is nonzero, it is the vector ∂X

2 /∂u∂v
∣∣
(0,0)

is the offset from the
lines being parallel, that is the lines

X(0, 0) + s
∂X

∂u

∣∣
(0,0)

X(0, v) + s (
∂X

∂u

∣∣
(0,v)

− v
∂2X

∂u
∂v

∣∣
(0,0)

)

and the lines
X(0, 0) + s

∂X

∂v

∣∣
(0,0)

X(u, 0) + s (
∂X

∂v

∣∣
(u,0)

− u
∂2X

∂u
∂v

∣∣
(0,0)

)

are essentially parallel and give the tangent plane. This represents a twisting of the tangent
planes along the curves X(u, 0) and X(0, v), see diagram below.

For a bicubic Bezier patch, the twist vectors will determine the interior control points p1,1,
p1,2, p2,1 and p2,2. The effect of specifying a twist vector is not entirely obvious. Instead, it is
more standard to specify a zero twist vector and shape a bicubic Bezier patch by specifying
planes at the four corners, as a zero twist vector implies that the control points p0,0, p1,0,
p0,1 and p1,1 are coplanar.

Exercises

In the majority of these exercises, you are to work on understanding the Bezier patches,
particularly bicubic Bezier patches. The goal being to understand the effect of placing
control points, and develop a geometric intuition of the effect of each control point on the
shape of the bicubic Bezier patch. To accomplish this, you are to use the file bpatch.txt
and the file bpatch.mws available on the ANGEL, together with the interactive applets
for creating Bezier patches and Bezier patches with zero twist vectors..



27-5

1. Start with the control net



p0,0 = [0, 0, 0] p1,0 = [1, 0, 0] p2,0 = [2, 0, 0] p3,0 = [3, 0, 0]
p0,1 = [0, 1, 0] p1,1 = [1, 1, 0] p2,1 = [2, 1, 0] p3,1 = [3, 1, 0]
p0,2 = [0, 2, 0] p1,2 = [1, 2, 0] p2,2 = [2, 2, 0] p3,2 = [3, 2, 0]
p0,3 = [0, 3, 0] p1,3 = [1, 3, 0] p2,3 = [2, 3, 0] p3,3 = [3, 3, 0]




Leave the exterior control point alone, and change the interior control points p1,1, p1,2,
p2,1, p2,2. How does the surface change?

(a) First change only the z component.

(b) Compute the Bezier patch using the command BPatch.

(c) Plot the patch using the command PatchPlot

(d) Plot the control net using the command ContNet

(e) Display both the patch and the control net together.

(f) Next change every component.

2. Start with the control net



p0,0 = [0, 0, 0] p1,0 = [1, 0, 0] p2,0 = [2, 0, 0] p3,0 = [3, 0, 0]
p0,1 = [0, 1, 0] p1,1 = [1, 1, 0] p2,1 = [2, 1, 0] p3,1 = [3, 1, 0]
p0,2 = [0, 2, 0] p1,2 = [1, 2, 0] p2,2 = [2, 2, 0] p3,2 = [3, 2, 0]
p0,3 = [0, 3, 0] p1,3 = [1, 3, 0] p2,3 = [2, 3, 0] p3,3 = [3, 3, 0]




Leave the interior control points alone and change the exterior control points p0,0, p1,0,
p2,0, p3,0, p0,1, p3,1, p0,2, p3,2, p0,3, p1,3, p2,3, p3,3. How does the surface change?

(a) First change only the z component.

(b) Compute the Bezier patch using the command BPatch.

(c) Plot the patch using the command PatchPlot

(d) Plot the control net using the command ContNet

(e) Display both the patch and the control net together.

(f) Next change every component. [In particular what happens, if the some of the
exterior control points are the same.]

3. Create a general catalog of bicubic Bezier patches.

4. Create a general catalog of bicubic Bezier patches with zero twist vectors.

5. CONTEST: Create the most interesting bicubic Bezier patch you can. Think about
the placement of the control points. You will need to be able to say why you think
this is an interesting patch. The most interesting bicubic Bezier patches as voted in
class tomorrow will earn extra credit points.

6. Show that a zero twist vector implies that the four control points p0,0, p1,0, p0,1 and
p1,1 are coplanar.


