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Abstract— This paper considers the problem of designing
optimal smoothing spline with constraints on its derivatives.
The splines of degree k are constituted by employing normalized
uniform B-splines as the basis functions. We then show that the
l-th derivative of the spline can be obtained by using B-splines of
degree k− l with the control points computed as l-th difference
of original control points. This yields systematic treatment of
equality and inequality constraints over intervals on derivatives
of arbitrary degree. Also, pointwise constraints can readily be
incorporated. The problem of optimal smoothing splines with
constraints reduce to convex quadratic programming problems.
The effectiveness is demonstrated by numerical examples of
approximations of probability distribution function and concave
function, and trajectory planning with the constraints on
velocity and acceleration.

I. INTRODUCTION

The problem of constructing approximations to curves

with constraints on the derivatives is important in a number

of areas. A classical example is the problem of approximat-

ing the growth chart of an individual from birth to age 18. If

classical smoothing splines are used there is no guarantee that

the curve will be monotone. One looses a lot of credibility

if the chart shows that the child has grown shorter at some

period during its life. The problem of constructing monotone

smoothing splines was solved in [4] using cubic smoothing

splines but the construction was very specific to the cubic

case. Meyer in [9] has also constructed monotone smoothing

splines but her construction is also specific to the cubic case.

In this paper we construct monotone smoothing splines of

higher order using B-splines in conjunction with quadratic

programming. This is important for it allows the one to

take derivatives of the splines and to have good convergence

properties of the derivatives. With cubic splines derivatives

have quite degraded convergence properties. Splines with

constraints on derivatives are also studied in [2], [13].

It is quite easy to construct splines with inequality con-

straints on the derivatives at points. This was done in [10],

[14] and in book form in [5]. The problem reduces to a

quadratic programming problem and is easily solved. The

problem of imposing the constraints on an interval seems

to lead to an infinite dimensional problem which seemed

The first author was supported in part by Research Institute for Science
and Technology for Tokyo Denki University under Grant Number Q10J-08.

H. Kano is with the Division of Science, School of Science and Engi-
neering, Tokyo Denki University, Hatoyama, Hiki-gun, Saitama 350-0394,
Japan. E-mail: kano@mail.dendai.ac.jp

H. Fujioka is with the Department of System Management, Fukuoka
Institute of Technology, 3-30-1,Wajiro-higashi,Higashi-ku, Fukuoka 811-
0295 Japan. E-mail: fujioka@fit.ac.jp

C. F. Martin is with the Department of Mathematics and Statis-
tics, Texas Tech University, Lubbock, TX 79409, USA. E-mail:
clyde.f.martin@ttu.edu

out of reach. In [4] the problem was solved as a dynamic

programming problem but the method was special to the

cubic case. Very recently Nagahara, [11], has given a subop-

timal solution to the problem of constructing splines with

derivative constraints using positive systems. In [11] the

constraints are restricted to be of the form x( j)(t) ≥ 0. The

solutions given in this paper include a solution to one basic

problem of constructing splines with x(t) ≥ 0 and x′′(t) ≤ 0.

This is a problem frequently encountered in statistics.

This paper is organized as follows. In Section II, we briefly

review B-splines and design methods of optimal smoothing

splines. Then in Section III, we develop a systematic method

for constructing optimal spline with constraints on its deriva-

tives of arbitrary degree. We examine the performances of

the proposed method by numerical examples in Section IV.

Concluding remarks are given in Section V. All the Lemmas

and Propositions are presented without proofs.

II. PRELIMINARIES

A polynomial spline x(t) of degree k in an interval D =
[t0, tm] ⊂ R can be represented as

x(t) =
m−1

∑
i=−k

τiBk(α(t − ti)), (1)

by an appropriate choice of the weighting coefficients τi ∈ R

called control points [1]. Here, Bk(t) is a normalized, uniform

B-spline function of degree k, m is an integer, and α(> 0)
is a constant for scaling the interval between equally-spaced

knot points ti with

ti+1 − ti =
1

α
. (2)

It is noted that employing a higher degree k of B-splines

in (1) yields splines x(t) of higher degree and thus allows

us to design more complex curves. Also, for fixed k and

the interval [t0, tm], increasing the parameter α (i.e. smaller

knot points spacing) gives us more flexibility of spline design

since m (equivalently the number of control points) increases.

As preliminaries, we briefly review the basic problem of

optimal splines based on normalized uniform B-splines.

A. Normalized Uniform B-Splines

Normalized uniform B-spline Bk(t) of degree k is defined

by

Bk(t) =











Nk− j,k(t − j) j ≤ t < j +1,

j = 0,1, · · · ,k

0 t < 0 or t ≥ k +1,

(3)
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and the basis elements N j,k(t) ( j = 0,1, · · · ,k), 0 ≤ t ≤ 1 are

obtained recursively by the following algorithm:

Algorithm 1: Let N0,0(t)≡ 1 and, for i = 1,2, · · · ,k, com-

pute






















N0,i(t) = 1−t
i

N0,i−1(t)

N j,i(t) = i− j+t
i

N j−1,i−1(t)+ 1+ j−t
i

N j,i−1(t),

j = 1, · · · , i−1

Ni,i(t) = t
i
Ni−1,i−1(t).

(4)

Thus, Bk(t) is a piece-wise polynomial of degree k with inte-

ger knot points and is k−1 times continuously differentiable.

For the sake of later reference, we introduce (k + 1)-
dimensional vectors Nk(t) and hk(t) as

Nk(t) =
[

N0,k(t) N1,k(t) · · · Nk,k(t)
]T

(5)

hk(t) =
[

tk tk−1 · · · 1
]T

. (6)

Then Nk(t) is written as

Nk(t) = Skhk(t), (7)

where Sk ∈ R(k+1)×(k+1) is a matrix whose i-th row consists

of the coefficients of polynomial Ni−1,k(t). It can be shown

that the matrix Sk can be obtained by the following recursive

algorithm. Letting S0 = 1, compute Si ∈ R(i+1)×(i+1) for i =
1,2, · · · ,k by

Si =
1

i

([

0i+1 ΓiSi−1

]

+
[

∆iSi−1 0i+1

])

, (8)

where the matrices Γi,∆i ∈ R(i+1)×i are defined as

Γi =



















1

i−1 2

i−2 3

. . .
. . .

1 i

0 0



















,∆i =



















−1

1 −1

1 −1

. . .
. . .

1 −1

1



















.

(9)

Here the empty spaces denote zero entries.

B. Optimal Smoothing Splines

The control points τi in (1) are typically determined by

the theory of smoothing splines (see, e.g. [7] for details).

Suppose that we are given a set of data

{(si,di) : si ∈ [t0, tm], di ∈ R, i = 1,2, · · · ,N}, (10)

and let τ ∈ RM (M = m+k) be the weight vector defined by

τ =
[

τ−k τ−k+1 · · · τm−1

]T
. (11)

Then a standard problem is to find such a τ minimizing the

cost function

J(τ) = λ

∫ tm

t0

(

x(2)(t)
)2

dt +
N

∑
i=1

wi (x(si)−di)
2 , (12)

where λ (> 0) is a smoothing parameter, and wi(0 ≤ wi ≤ 1)
are weights for approximation errors.

Introducing a vector b(t) ∈ RM ,

b(t) =
[

Bk(α(t − t−k)) Bk(α(t − t−k+1))

· · · Bk(α(t − tm−1))
]T

, (13)

the spline x(t) in (1) is written as x(t) = τT b(t). Then, the

cost J(τ) in (12) is rewritten as a quadratic function of τ ,

J(τ) = τT Gτ −2gT τ + r, (14)

with
G = λQ+BWBT , g = BWd, r = dTWd. (15)

Here Q ∈ RM×M is a Gramian defined by

Q =
∫ tm

t0

d2b(t)

dt2

d2bT (t)

dt2
dt. (16)

The matrices B ∈ RM×N , W ∈ RN×N , d ∈ RN are defined by

B =
[

b(s1) b(s2) · · · b(sN)
]

, (17)

W = diag{w1, w2. · · · , wN}, (18)

d =
[

d1 d2 · · · dN

]T
. (19)

Notice here that G in (15) is positive-semidefinite, i.e. G ≥
0, since λ > 0, Q ≥ 0 and W ≥ 0, and hence J(τ) is a

convex function. Thus, if there are no constraints, the optimal

solution is given as a solution of linear algebraic equations,

Gτ = g. (20)

Note that (20) has at least one solution and obviously the

solution is unique if and only if G > 0. In addition, once the

parameters k and m (or M(= m + k)) are fixed, the size of

the algebraic equation (20) remains the same regardless of

the number of data N. The Gramian Q ∈ RM×M in (16) can

be computed explicitly by using B-splines (see e.g. [7]).

On the other hand, a given function f (t), t ∈ [t0, tm] can

also be approximated by smoothing splines, in which case

the following cost function is used.

J(τ) = λ

∫ tm

t0

(

x(2)(t)
)2

dt +
∫ tm

t0

(x(t)− f (t))2
dt. (21)

Similarly as above, this cost function is rewritten as

J(τ) = τT Gτ −2gT τ + fc, (22)

where G, g and fc denote

G = λQ+Q0, g =
∫ tm

t0

b(t) f (t)dt, fc =
∫ tm

t0

f 2(t)dt. (23)

Here, Q0 ∈ RM×M is defined as

Q0 =

∫ tm

t0

b(t)bT (t)dt. (24)

Obviously, it holds that G > 0 in (23) since Q0 > 0 (see [6]),

hence J(τ) in (22) is strictly convex in τ and unique optimal

solution exists.

III. SPLINE WITH CONSTRAINTS ON DERIVATIVES

For the optimal smoothing spline x(t) of degree k as

described in the previous section, we impose the following

condition on its l-th derivative

x(l)(t) ≥ c ∀t ∈ [t j, t j+1], (25)

where 0 ≤ l ≤ k and c is a given constant. Setting c = 0

yields monotone splines.
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Moreover, we generalize the constant c in (25) to some

function of t, e.g. a linear function as

x(l)(t) ≥ pt +q ∀t ∈ [t j, t j+1]. (26)

Note that such constraints for each knot point interval

[t j, t j+1] allow us more flexible treatment of constraints over

intervals, such as the curve being convex on some interval

and concave on another. Also, the above inequality ’≥’ can

be readily replaced with ’≤’ or equality ’=’, as we will see

in the subsequent development.

Our problem here is to express such constraints in terms

of the control points τi. In the sequel, we first develop basic

formula for derivatives of splines.

A. Formula for Derivatives of Spline

Since x(t) is a piece-wise polynomial of degree k, we

examine the polynomial in each interval [t j, t j+1] for j =
0,1, · · · ,m−1. Focusing on the interval [t j, t j+1], the spline

x(t) in (1) is written as

x(t) =
j

∑
i= j−k

τiBk(α(t − ti)). (27)

Using (3), we then get

x(t) =
k

∑
i=0

τ j−k+iNi,k(α(t − t j)), t ∈ [t j, t j+1], (28)

and it depends on only the k + 1 weights τ j−k, τ j−k+1, · · · ,
τ j. Moreover, by introducing a new variable u,

u = α(t − t j), (29)

the interval [t j, t j+1] in t is normalized to [0,1] in u , and we

may write x(t) as x̂(u),

x̂(u) =
k

∑
i=0

τ j−k+iNi,k(u), u ∈ [0,1]. (30)

Letting τ[ j−k, j] ∈ Rk+1 be a vector

τ[ j−k, j] =
[

τ j−k τ j−k+1 · · · τ j

]T
, (31)

and using (7), we rewrite x̂(u) in (30) as

x̂(u) = τT
[ j−k, j]Nk(u). (32)

In general, the l-th derivative x(l)(t) for t ∈ [t j, t j+1] is

expressed in terms of u ∈ [0,1] in (29) by

x(l)(t) = α l x̂(l)(u), (33)

with

x̂(l)(u) =
k

∑
i=0

τ j−k+iN
(l)
i,k (u) = τT

[ j−k, j]N
(l)
k (u). (34)

Now we prepare a lemma where derivatives of basis

elements Nk(t) of splines in (5) are related to lower order

elements by the matrix ∆i in (9). Here we define a matrix

∆[i1,i2] ∈ R(i1+1)×i2 for i1 ≥ i2 by

∆[i1,i2] =
i2

∏
ν=i1

∆ν = ∆i1 ∆i1−1 · · ·∆i2 . (35)

Lemma 1: The first derivative of vector Ni(t) is given by

N
(1)
i (t) = ∆iNi−1(t), i = 1,2, · · · (36)

and hence the l-th derivative by

N
(l)
i (t) = ∆[i,i−l+1]Ni−l(t). (37)

This lemma shows that the l-th derivative x̂(l)(u) in (34)

can be represented by the basis elements Ni,k′(u), (i =
0,1, · · · ,k′) of degree k′, where

k′ = k− l. (38)

Thus we let

x̂(l)(u) =
k′

∑
i=0

φ j−k′+iNi,k′(u) = φ T
[ j−k′, j]Nk′(u), (39)

where φ[ j−k′, j] ∈ Rk′+1 is defined by

φ[ j−k′, j] =
[

φ j−k′ φ j−k′+1 · · · φ j

]T
. (40)

From (34), (37) and (39), the vector φ[ j−k′, j] is related to

τ[ j−k, j] by

φ[ j−k′, j] = ∆T
[k,k−l+1]τ[ j−k, j]. (41)

The coefficients φi in (39) are determined in terms of the

control points τi in (30) as follows, where we introduced a

shift operator z such that

zi′τi = τi+i′ . (42)

Lemma 2: The l-th derivative x(l)(t) of spline x(t) in (27)

is expressed as spline in (33) and (39), where the control

points φi in (39) are given by

φi = A j−i,l(z)τ j, i = j− k′, j− k′ +1, · · · , j, (43)

with An,l(z) = z−n(1− z−1)l .

Remark 1: Noting that 1− z−1 is a difference operator as

(1− z−1)τ j = τ j − τ j−1, the term (1− z−1)lτ j in A j−i,l(z)τ j

gives the l-th backward difference beginning with τ j. Then

the remaining factor z−( j−i) for i = j − k′, j − k′ + 1, · · · , j

gives all the l-th difference formed from the sequence of

k +1 control points {τ j−k, τ j−k+1, · · · τ j}.

Using (33), (39) and u = α(t − t j) in (29), we get

x(l)(t) = α l
k′

∑
i=0

φ j−k′+iNi,k′(α(t − t j)), t ∈ [t j, t j+1]. (44)

The l-th derivative of x(t) in (1) is then expressed in terms

of B-splines as

x(l)(t) = α l
m−1

∑
i=−k′

φiBk′(α(t − ti)), t ∈ [t0, tm]. (45)

By Lemma 2, we thus have a nice property that the l-th

derivative x(l)(t) of spline x(t) is determined by the l-th

difference φi of control points τi for x(t).
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B. Constraints on Derivatives

Now we are in a position to state the constraint in (25) in

terms of the control points τi.

Proposition 1: If the control points φi given by (43)

satisfy

φi ≥
c

α l
, i = j− k′, j− k′ +1, · · · , j, (46)

then the spline x(t) satisfies the constraint (25).

Introducing a vector 1i = [1 1 · · · 1]T ∈ Ri, the constraint

(46) is written as

φ[ j−k′, j] ≥
c

α l
1k′+1, (47)

and (41) gives the expression in terms of original control

points τi as

∆T
[k,k+1−l]τ[ j−k, j] ≥

c

α l
1k′+1. (48)

This constraint is easily extended to knot point interval of

arbitrary length, say [t j, t j+n] for n ≥ 1, as

∆T
[k+n−1,k+n−l]τ[ j−k, j+n−1] ≥

c

α l
1k′+n. (49)

Example 1: If we impose the constraint (25) over the

entire interval, namely x(l)(t) ≥ c, ∀t ∈ [t0, tm], then letting

j = 0 and n = m in (49) yields the constraint on the control

point vector τ as

∆T
[k+m−1,k+m−l]τ ≥

c

α l
1k′+m (50)

since τ[−k,m−1] = τ by (11).

Example 2: Since the first and second derivatives of x(t)
are of particular interest, we introduce simpler notations.

Letting D1
i = ∆T

[i,i] = ∆T
i and D2

i = ∆T
[i,i−1] = (∆i∆i−1)

T , we

have

D1
i =











−1 1

−1 1

. . .
. . .

−1 1











(∈ Ri×(i+1)) (51)

and

D2
i =











1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1











(∈ Ri×(i+2)) (52)

where the empty spaces denote zero entries.

Using these matrices, the condition (50) for l = 1 and

l = 2 are rewritten as D1
k+m−1τ ≥ c

α 1k+m−1 and D2
k+m−2τ ≥

c
α2 1k+m−2, respectively.

Next we generalize the constraint in (25) from constant c

to some function of t. Specifically, we consider the constraint

x(l)(t) ≥ v(t) ∀t ∈ [t j, t j+1] (53)

where we assume that v(t) is itself a spline of degree k′ and

expressed in terms of B-splines as

v(t) =
m−1

∑
i=−k′

µiBk′(α(t − ti)). (54)

Then v(t) in the interval [t j, t j+1] is written as

v(t) =
j

∑
i= j−k′

µiBk′(α(t − ti)) t ∈ [t j, t j+1] (55)

and, similarly as (27)-(30) with k = k′, we get v(t) = v̂(u)
with u = α(t − t j) and

v̂(u) =
k′

∑
i=0

µ j−k′+iNi,k′(u), u ∈ [0,1]. (56)

Proposition 1 is now generalized as follows.

Proposition 2: If the control points φi given by (43)

satisfy
φi ≥

µi

α l
, i = j− k′, j− k′ +1, · · · , j, (57)

then (53) holds.

Example 3: A simple but useful example of v(t) in (54)

is a linear function in t, say,

v(t) = p(t − t0)+q. (58)

This function is realized by the control points µi given by

µi =
1

2α

(

2i+ k′ +1
)

p+q, i = j−k′, j−k′+1, · · · , j. (59)

For example, by setting l = 0 in Proposition 2, the con-

dition φi ≥ µi, i = j− k, j− k + 1, · · · , j with the above µi

guarantees that the function x(t) satisfies

x(t) ≥ p(t − t0)+q ∀t ∈ [t j, t j+1]. (60)

Also, for the inequality to hold on the entire interval [t0, tm),
we simply let j = 0,1, · · · ,m− 1 yielding φi ≥ µi for i =
−k,−k +1, · · · ,m−1.

As we have seen, we now have a method of describing

equality and inequality constraints on all the derivatives of

splines over basic knot point interval, and hence any knot

point intervals. Moreover, we can describe various types of

constraints at isolated points and integral values of splines

[8]. All these constraints are expressed as linear constraints

on the control points.

Thus, we can now design optimal smoothing splines by

minimizing the convex quadratic cost J(τ) as shown in (14)

and (22), whereas a number of constraints on the splines

are expressed as linear constraints on τ , either equality or

inequality or both. A general form of problems is then

min
τ∈RM

J(τ) =
1

2
τT Gτ +gT τ (61)

subject to the constraints of the form

Aτ = d, f1 ≤ Eτ ≤ f2, h1 ≤ τ ≤ h2, (62)

for some matrices and vectors of appropriate dimensions.

A very efficient numerical algorithm is available for this

purpose (see, e.g. [12]).

IV. NUMERICAL EXAMPLES

We examine the design method presented in the previous

sections numerically. As examples, we consider the prob-

lems of approximating probability distribution function and

nonnegative concave function, and trajectory planning. Either

cubic (i.e. k = 3) or quintic (k = 5) splines are used.
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(a) Equally spaced data points

(b) Randomly spaced data points

Fig. 1. Approximation of Gaussian probability distribution function f (t)
from its sampled data * by cubic smoothing splines with and without the
monotonicity constraints (64), denoted x(t) and x0(t) respectively.

A. Approximation of Probability Distribution Functions

Let f (t) be the Gaussian probability distribution function

with zero mean and unit variance. We then approximate

f (t) in the interval [t0, tm] = [−5,+5] from its samples

di = f (si), i = 1,2, · · · ,N. For N = 5, we consider the two

cases where the sampling points si are equally spaced and

randomly spaced. It is noted that the knot points are equally

spaced and the same in both cases.

With k = 3, α = 1/2 and m = 5 in (1), we reconstruct f (t)
as an optimal smoothing spline x(t) based on the criterion

(12) with λ = 10−3 and wi = 1/N. We impose the equality

constraints at the boundaries,

x(−5) = 0, x(5) = 1, (63)

and inequality constraints on the first derivative as

x(1)(t) ≥ 0 ∀t ∈ [−5,5]. (64)

For specifying the constraints in terms of the control point

vector τ , we use the method in [8] for (63) and the method

developed in Section III for (64).

The results are shown in Figure 1, where the data points

(si,di) are shown by asterisks *, and f (t) and the designed

spline x(t) are plotted in black dotted line and blue solid

line respectively. Also we showed in red solid line an optimal

smoothing spline x0(t) obtained without the constraints (64).

We see that the curve x(t) closely approximates f (t) while

maintaining the monotone nondecreasing property specified

as (64), which is not the case with the curve x0(t).

Fig. 2. Approximation of nonnegative concave function f (t) from its noisy
samples * by quintic smoothing splines with and without the constraints on
the second derivative in (66), denoted x(t) and x0(t) respectively. The splines
x(t) and x0(t) (top) and their second derivatives (bottom).

B. Approximation of Concave Function

We approximate the following concave function

f (t) = cos(t) (65)

in [t0, tm] = [−π/2,π/2] by optimal smoothing spline x(t)
with the constraints

x(t) ≥ 0, x(2)(t) ≤ 0 ∀t ∈ [−π/2,π/2]. (66)

The data (si,di) are generated by sampling f (t) at 20(=
N) equally spaced points si in [−π/2,π/2] with additive

Gaussian white noise of zero mean and standard deviation

0.1.

The design parameters for smoothing are set as k = 5,

m = 20, λ = 0.0001 and wi = 1/N. The constraint x(t)≥ 0 ∀t

in (66) is realized by τ ≥ 0 (see [8]), whereas x(2)(t) ≤ 0 ∀t

is realized by D2
M−2τ ≤ 0 for the matrix D2

i defined in (52).

The results are shown in Figure 2, where x0(t) is an

optimal smoothing spline obtained without the constraint

x(2)(t) ≤ 0 ∀t. We observe that the desired results are

obtained by including the constraints on second derivative.

C. Trajectory Planning

We consider a trajectory planning problem with equality

and inequality constraints [3]. The time interval of interest

is [t0, tm] = [0,1], and the initial and terminal conditions are

set as

x(0) = x(1)(0) = x(2)(0) = 0, x(1) = 1, x(1)(1) = x(2)(1) = 0.
(67)
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Fig. 3. Planned trajectories x(t) (top), x(1)(t) (middle) and x(2)(t) (bottom)

by quintic smoothing splines, and their counterparts x0(t), x
(1)
0 (t) and x

(2)
0 (t)

without the constraints in (69).

We require the trajectory x(t) to pass through the intervals

[xi,xi] at the three time instants s1 = 0.25, s2 = 0.5, s3 = 0.8,

namely

xi ≤ x(si) ≤ xi, i = 1,2,3, (68)

with [x1,x1] = [0.3,0.5], [x2,x2] = [0.1,0.3], and [x3,x3] =
[0.8,1.0]. Moreover, the magnitudes of the velocity and

acceleration are limited for the entire interval of time as

|x(1)(t)| ≤ 2, |x(2)(t)| ≤ 20, ∀t ∈ [0,1]. (69)

For designing the smoothing spline by the criterion in

(12), we use the mid points of each interval in (68) as the

data points, namely di = (xi +xi)/2 for i = 1,2,3 (= N), and

thus (s1,d1) = (0.25,0.4), (s2,d2) = (0.5,0.2), and (s3,d3) =
(0.8,0.9) in (10). The design parameters are k = 5, α = 20

and m = 20 in (1), and λ = 10−5 and wi = 1/N = 1/3 in

(12).

Figure 3 shows the planned trajectory x(t) and its deriva-

tives x(1)(t) and x(2)(t) in blue lines. The red lines show the

optimal splines x0(t) and its derivatives obtained without the

velocity and acceleration constraints (69). We see that the

trajectory x(t) satisfies all the constraints.

V. CONCLUDING REMARKS

We presented a systematic method for designing optimal

smoothing splines with equality and/or inequality constraints

on their derivatives over intervals. The splines of degree

k are constituted employing normalized uniform B-splines

as the basis functions, and hence the central issue is to

determine an optimal vector τ of the so-called control points.

The l-th derivative of the spline are obtained by using B-

splines of degree k− l with the control points computed as

l-th difference of original control points in τ . This yielded

systematic treatments and solutions for problems with equal-

ity and inequality constraints over intervals on derivatives

of arbitrary degree. Also, pointwise constraints can readily

be incorporated. We demonstrated the effectiveness of the

design method by numerical examples, namely, approxima-

tions of Gaussian distribution function and concave function,

and trajectory planning with the constraints on velocity and

acceleration.
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