MA 323 Geometric Modelling
Course Notes: Day 14
Properties of Bezier Curves

David L. Finn

In this section, we discuss the geometric properties of Bezier curves. These properties
are either implied directly from de Casteljau’s algorithm or properties of the Bernstein
polynomials. We have indirectly mentioned a few of these properties in class, with a few of
the properties obvious from the algorithm and Bezier form. However, other properties are
far from obvious and require some deep thought.

We list the more obvious properties and provide the direct reasons for these properties, with
little discussion. The more deep properties

14.1 Endpoint Interpolation

Figure 1: Bezier curve with endpoint interpolation

A Bezier curve always passes through the first and last control points. This is a property
of de Casteljau’s algorithm. When ¢ = 0, from the definition of de Casteljau’s algorithm

pitt =plsopy =py = =p} =p3 = po. In addition, when ¢ = 1, we have p/ ' =p,
so pi = p?*l - = p}kl = p% = pp. This is also a direct consequence of the basis function

approach by observing the following facts about the Bernstein polynomials 0 < g7'(¢) < 1
for 0 <tleql, 0 < B(t) <1lfor 0 <t <1, >  B"(t) =1and §7(0) =1 = 3"(1). These
facts imply that ¢(0) = po and ¢(1) = p,,. It is possible to arrange a Bezier curve to pass
through other control points, but generically this will not happen.
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14.2 Prescribed Tangent Lines at the Endpoints:

A Bezier curve has prescribed tangent lines at the control points pg and p,. The tangent
lines being given by the line segments pop; and p,—1p,. To see this, we note that c(t) =
pi(t) = (1 —t)pa~t(t) + t P~ (t) then differentiating we have ¢/(t) = pP~*(t) — pi~*(t) +
(1—1) (pg™ ") (t) +t (7~ 1)(t). Evaluate when ¢ = 0, we have ¢(0) = p~1(0) — po~1(0) +
(py~1)'(0). From the endpoint interpolation, pf~*(0) = py and p}~'(0) = p;. Induction
then leads to (pfY(£) = pi—*"1(2) — pi—*1(¢) + (s~ 1)(t) and (") (0) = p1 —
po + (pp~"71)(0). Eventually, we are reduced to the linear case (pg)'(t) = p{ — pj. Then
back-substituting yields (pf)’(0) = n (p1 — po). A similar argument at the other endpoint
yields pg (1) = n (pn — pn—1). Alternatively, one use the basis function approach and note

from the derivative properties of a Bezier curve that
n—1
d(t)=nd_ B Ht) Aip.
i=0

The endpoint interpolation property above implies that ¢/(0) = nAgp = n(p1 — po) and
(1) =nA,_1p =n(pp — pn—1)-

Figure 2: Prescribed Tangent Lines at the Endpoints

14.3 Symmetry:

Reversing the order of the control points produces the same curve. This is a direct conse-
quence of the change of variables s = 1 —t that converts the straight line (1 —¢)A+¢B which
parameterizes the line from A when ¢t = 0 to B when t = 1 to the straight line sA+ (1 —s)B
which parameterizes the line from B when s = 0 to A when s = 1. This shows that with
the Bezier curve ¢;(t) from the order pg, p1, p2, - - -, pn and the Bezier curve co(t) from the
order py, Pn_1, Pn—2, ** -, P1, Po are related by c1(t) = co(1 — t). Alternatively, this is a
property of the basis functions and their symmetry 87 (t) = 87_,(1 —t).

14.4 Convex hull property:

A Bezier curve lies in the convex hull of the control points. To explain this property we first
need to define the convex hull of a set of points. First a convex set is a set that contains the
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line segment joining every pair of points in the set (see diagram below). The convex hull is
the smallest convex set containing a set of points, in terms of set theory the convex hull is
the intersection of all convex sets that contain the point set.

Figure 3: Convex sets and nonconvex sets

In the figure above, the darker shaded sets are not convex and the lighter shaded sets are
convex.

Figure 4: Convex Hull Property

That a Bezier curve lies within in the convex hull of its control points follows directly from
de Casteljau’s algorithm. Every point constructed in de Casteljau’s algorithm lies with the
convex hull of the control points, as each point lies on a line segment constructed through
the control points, see diagrams below illustrating de Casteljau’s algorithm an the convex
hull.

14.5 Pseudolocal Control:

This property concerns the effect on the entire curve of changing one control point. The
entire curve is affected by moving one control point. However, the major change in the
curve is concentrated around one section of the curve. This is a property best seen from the
basis function approach. The function

Bi(E) = e - 0
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has derivative equal to zero when t =0, t = 1 and ¢ = i/n and maximum value at t = i/n.
But more importantly away from ¢ = i/n the function is close to zero. The effect of the
control point is concentrated near ¢t = ¢/n, but any change affects the whole curve.

Figure 5: Pseudo-local control property

14.6 Variation Diminishing Property:

A planar Bezier curve intersects a line no more times than its control polyline. [Spatial bezier
curves intersect a plane no more times than the control polyline, intersects the plane.] This
is a very useful property when considering the possible intersection of a Bezier curve with an
object. In particular, the intersection of two Bezier curves. Two Bezier curves can intersect
only if their convex hulls intersect, and the intersection of a convex hull with a curve may
be reduced to the intersection of a line with a curve. Variation diminishing tells us even
more. It tell us how many times the curve may intersect the line.

Figure 6: Variation Dimensioning Property
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Proving the variation diminishing property is not exactly easy, it involves the idea of degree
elevation and repeated degree elevation. Degree elevation is a simple concept. Suppose you
have defined a parabola (quadratic Bezier curve) through control points Py, P; and P to
solve one problem. However, you to solve another problem, you need a cubic Bezier curve
that generates the parabola. How do you generate the control points for this cubic Bezier
curve?

The solution is given by degree elevation. We create a new set of control points from
the control points pg, p1, p2. [The exact manner of accomplishing this is an explored in
the interactive exercises and the written exercises] In fact, the procedure involves a linear
interpolation to the control polyline. It is not hard to show that linear interpolants satisfy
the variation diminishing property (see the figure below). When we repeatedly applying
degree elevation to a control polyline, it is true that the new control polylines approach
the curve which they generate. Therefore, the original curve must satisfy the variation
diminishing property.

14.7 Exercises

1. CONVEX HULL: Construct the convex hull of the sets below.
(a) The set of points in the diagram below

Py
.

P2
Po

Figure 7: Construct Convex Hull of These Points

(b) The curves below the circle, curves and the line segments in the diagram below

/

Figure 8: Construct Convex Hull
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2. VARIATION DIMINISHING PROPERTY:: Given control points in the diagram below.

(a) Determine the number of times the Bezier curve could intersect the lines Ly, Lo,
and L3 at most.

(b) Sketch the Bezier curve through with the given control points and determine the
number of times the curve intersects the lines.

Po L]

L1

P2

p.
2 !

Figure 9: Variation Diminishing Property.

3. DEGREE ELEVATION 1: Compute the location of the control points for the cubic by
looking at the barycentric coefficients of Py, Py, P, for the parabola and the barycentric
coeflicents for the cubic Qo = Py, Q1, @2, Q3 = P> in written as standard polynomials,
that is express both in the form ag + a1t + a2t + 0¢3. In order for the curves to be
equal the curves as polynomials must be equal, and you have equations to solve for
the points. Test this solution in the applet for constructing Bezier Curves.

4. DEGREE ELEVATION 2: Determine the location of the control points for a quartic
curve (4th degree) to be equal to a cubic curve. First use the Bezier Curve applet to
approximate the location from succesfully completing the first two exercises. Then,
determine the exact location of the points as in the above exercises.

5. DEGREE REDUCTION: It is possible sometimes to reverse the process of degree
elevation to define a lower degree curve that is equal to the given Bezier curve. This
process is called degree reduction and can be directly applied only to degenerate
polynomial curves. If we modify the fundamental question to “given a Bezier curve of
degree n find a Bezier curve of degree n — 1 that is close to the given curve, then we
have a problem that is solvable. Use the Bezier curve applet to investigate a solution
to this problem. Generate a cubic Bezier curve, then try to approximate the cubic
curve with a quadratic Bezier curve. Then construct a quartic Bezier curve and try
to approximate it with a cubic Bezier curve. How did you place the control points?

6. THOUGHT PROBLEM: Given a line segment inside the convex hull of the control
points of a Bezier curve. Does the Bezier curve necessary intersect the curve. How
could you determine whether it does? and the number of times for which the curve
intersects the line?



