MA 323 Geometric Modelling
Course Notes: Day 35
Simple Subdivision Methods

David L. Finn

Today, we want to introduce some simple subdivision methods. In particular, we introduce
two methods, the midpoint method and the centroid method. These two methods can
be viewed simply as cutting the corners and/or cutting edges, where a new polyhedron is
obtained from the original polyhedron by cutting corners, see diagram below.

original cube

subdivided cube

Figure 1: A subdivision method based on cutting corners

35.1 Some Simple Subdivision Surfaces

Polyhedral surfaces are nice but in general polyhedral surfaces are analogous to polylines
for curves. They will not look smooth unless one uses a huge amount of data. Specifying
the amount of data needed to obtain smoothness is not efficient. Therefore, it is convenient
to specify a small amount of data to construct a rough approximate polyhedral surface and

35-2

then apply a smoothing operation to obtain a nice surface that is close in some sense to the
original polyhedral surface.

A simple method for defining a smoother operation is a subdivision algorithm. We discussed
a subdivision algorithm for curves in Chapter 4, as an application of de Casteljau’s algorithm
for Bezier curves. In Chapter 4, our subdivision algorithm produced a new polyline that is a
refinement of a polyline. A Bezier curve is the limiting curve that is produced by repeatedly
applying the algorithm. There are other subdivision algorithm for curves other than the
one derived from de Casteljau’s algorithm that was presented in Chapter 4. For surfaces,
subdivision algorithms are more complicated. For instance, the de Casteljau’s algorithm for
patches that we discussed in the previous two chapters do not easily generate subdivision
type algorithms which will produce Bezier patches. This is mainly because the data structure
for Bezier patches is not clearly a polyhedral surface and de Casteljau’s algorithm is not
defined in terms of the polyhedral structure of the control points.

In this section, we introduce some simple subdivision algorithms and the corresponding
subdivision surfaces. The algorithms that we introduce in this section are basically corner
cutting algorithms. Every vertex is replaced by a face. The difference is how new vertices
and edges are defined.

35.2 General Facts about Subdivision Algorithms

Subdivision algorithms need to accomplish a few things in general. First, a subdivision
algorithm must be applied to a polyhedral surface (a set of vertices, edges, and faces).
Second, it must return a polyhedral surface. This means given a polyhedral surface, a
subdivision algorithm must create a new set of points, a new set of edges and a new set
of faces. In principal, the faces should be planar but they do not have to be. Normally,
we want planar faces. To accomplish this requires that the algorithm produce planar faces,
which is the hard part of a subdivision algorithm unless you restrict the type of polyhedral
surface that the algorithm can be applied. If you remove the restriction of planar faces,
then one needs to use an interpolation algorithm to create a surface for each face.

To remove the restriction of planar faces, one standard technique is to apply the algorithm
of triangulated surfaces, where all the faces are triangles. The advantage of triangulated
surfaces is that three points (non collinear) always define a planar face. This means all
the algorithm has to do is generate triangulated surfaces from triangulated surfaces. An
advantage of triangulated surfaces is that they are easy to store in computers, and they
have been used in computer graphics and CAD/CAM systems for quite a while. So, there
are many algorithms for creating triangulated surfaces and for storing them and rendering
them. Another advantage is that there are methods for creating patches on triangular faces.

35.3 The Midpoint Algorithm

A simple subdivision algorithm is given by defining a new point set by taking the midpoint
of each edge in the surface, e;; = 1p; + £p; if there is an edge between points p; and p;. We
define new edges by connecting new edge points e;; and ey; if the edges p;p; and pyp; share
a face and a vertex, (see diagram below). The new faces are given as follows. Each old face
generates a new face by the edge points e;; that lie on the edges of the face, and each old
point p; generates a new face based on all edges points e;; which are generated by edges for
which p; is a vertex of the edge (see diagram below).

The algorithm for this subdivision surface is described below in pseudocode. Let p; be the

35-3

[A]

9

Figure 2: The Midpoint Algorithm

vertices in the surface, a;; be the adjacency matrix for the surface, f;; be the face adjacency
matrix, m be the number of faces. Let qi, bxi, gr; and n be the vertices, adjacency matrix,
face adjacency matrix, and number of faces for the new subdivision surface.

o Define the new points. If a;; = 1 define g, = %pﬁ—%pj, and set prec, = {m+i,m+j}
the predecessor points of g;, also set face;, = f;; the faces g is adjacent to. We store
prec, as m + i as renumbering of the point indices.

o Define the new edges. Set by; = 1 if prec;, Nprec; # {} and facey N face; # {}. That
is if the points share a predecessor point and a face.

e Define the new faces. If by = 1 set gr; = (prec;, Nprec;) U (facey, Nface;). The edge ki
is adjacent to the point prec;,, N prec; and the edge k! is adjacent to face, N face;

This type of algorithm involves cutting the corners of the polyhedral surface. In the limit
each original face will generate generically one point on the surface.

This midpoint algorithm can easily be generalized by considering a trisection algorithm by
having each edge generate two points. Define new points e;; = 2pi+4p; and e = ipit+3p;.
New edges are defined in the same ways as in the manner as in the midpoint algorithm.
With the addition of an edge between e}j and e%j. New faces are generated in the same
manner as in the midpoint algorithm.

35-4

Figure 3: The Centroid Method

35.4 The Centroid Algorithm

In this algorithm, we define a different corner cutting algorithm based on using the centroid
of each face. The centroid of a face is the point given by the affine combination

fF:%Z'Ui

v, EF

where vy, vg, - -+, v, are the vertices of the face F'. In this algorithm, we define new points
by contracting each face, that is defining the new vertex set by

1 1
vll:‘,v = 5fF+ ip

if v € F. New faces are generated by each old face (containing the new vertex that are
generated by that face), each old vertex (containing the new vertices that are generated by
that face), and each old edge (containing the vertices that are generated by the endpoints
of the edge). The new edges are generated by the old edges. Two vertices have an edge
between them if they are on the same face and there was an edge between the vertices that
generated them or if they were generated by the same vertex and the faces that generated
them were adjacent, see diagram below.

The algorithm is given in pseudocode below. Let p; be the vertices of the original surface,
a;; be the adjacency matrix of the original surface, f;; the face adjacency matrix, Fj be
the faces of the original surface, and m the number of faces in the original surface. Let g,
bri, gki, Gk, and n be the vertices, adjacency matrix, face adjacency matrix, and number of
faces for the new subdivision surface. This is demonstrated pictorially in the figure above

35-5

e Define the new points: Define the centroid of each face, fr = ﬁ >_pi; where |F}|
is the number of vertices in face Fj and p;; are the vertices in Fj. Then define
i, = 5%+ 3Pi,-

e Define the new faces:

— face faces: For each face, Fj define a new face consisting of the points gy ;;
generated by the face Fj.

— point faces: For each point p; define a new face consisting of all the points gy ;
generated by the point p;.

— edge faces: For each edge e;; between vertices p; and p; generate a new face
consisting of the four vertices qr s, qi j, qi,i, and g ; where e;; is adjacent to the
faces I}, and Fj.

e Define the new edges:
— edge edges: There is an edge between points g ; and g ; if there was an edge
between the points p; and p; which both belong to the face Fj,.

— face edges: There is an edge between points qx; and ¢; if there is an edge e;; in
the original polyhedral surface with the faces Fj and F; generating qx; and g;
respectively.

35-6

35.5 EXERCISES

1. Apply both the midpoint algorithm and the centroid algorithm once to the figure
below. Construct the edge graph and the face graph for the polyhedra, and the edge
and the face graph after the subdivision and then sketch the polyhedra.

/—

Figure 4: Apply the subdivision methods to this surface

2. Use the Applets to play with the algorithms and the methods to see what happens to
different polyhedra under the algorithms.

(a) What is similar between the surfaces generated by the two methods?
(b) What is different between the surfaces generated by the two methods?

(c¢) For surfaces with the same “topology” (same Euler characteristic V — F + E)
what is the same and what is different between the surfaces generated by each
method?

3. Verify that the midpoint and centroid algorithm will preserve Euler’s formula V—F+FE
for a polyhedra. Therefore, the algorithms preserve the “topology” of the surface.

4. Do the midpoint and centroid algorithm satisfy any convex hull type properties? This
is a inclusion type properties meaning if P is a polyhedron and P! is the polyhedron
generated by the subdivision method, is P! contained in convex hull of P°. More
specifically, is P! contained in PY as a solid object? Justify your conclusions.

