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ABSTRACT

This is a survey of recent developments in smoothing parameter
selection for curve estimation. The first goal of this paper is to
provide an introduction to the methods available, with discussion at
both a practical and also a nontechnical theoretical level, including
comparison of methods. The second goal is to provide access to the
literature, especially on smoothing parameter selection, but also on
curve estimation in general. The two main settings considered here are
nonparametric regression and probability density estimation, although
the points made apply to other settings as well. These points also
apply to many different estimators, although the focus is on kernel
estimators, because they are the most easily understood and motivated,

and have been at the heart of the development in the field.



1. Introduction

Choice of smoothing parameter is the central issue in the
application of all types of nonparametric curve estimators. This is
demonstrated in Figure 1 which shows a simulated regression setup. In
Figure la, the curve is the underlying regression function, and
simulated observations, taken at equally spaced design points, are
represented by crosses. Figures 1b, lc and 1d show the same curve and
observations together with some moving weighted averages of the crosses,
shown as dashed curves, corresponding to different window widths, as
shown by the dashed curves representing the weights, which appear at the
bottom of each plot. Note that in Figure 1b, the window width is quite
narrow, with the result that there are not enough observations appearing
in each window for stability of the average, and the resulting estimate
is overly subject to sample variability, i.e. is too "wiggly"”. Note
that this is improved in Figure 1lc, where a larger window width has been
used. In Figure 1d, the window width is so large that observations from
too far away appear in the averages, with the effect of introducing some
bias, or in other words features of the underlying curve that are
actually present have been smoothed away.

[put figure 1 about here]

The very large amount of flexibility in nonparametric curve
estimators, demonstrated by changing the window width in the example of
Figure 1, allows great payoffs, because these estimators do not
arbitrarily impose structure on the data, which is always done by

parametric estimators. To see how this is the case, think of doing a



simple linear regression least squares fit of the data in Figure 1. Of

course, if the structure imparted by a parametric model is appropriate,
then that model should certainly be used for inference, as the decreased
flexibility allows for much firmer results, in terms of more powerful
hypothesis test, and smaller confidence intervals. However it is in
cases where no model readily suggests itself, or there may be some doubt
as to the model, that nonparametric curve estimation really comes to the
fore. See Silverman (1986) and Hirdle (1988) for interesting
collections of effective data analyses carried out by these methods.
However there is a price to be paid for the great flexibility of
nonparametric methods, which is that the smoothing parameter must be
chosen. It is easy to see in Figure 1 which window width is
appropriate, because that is a simulation example, where the underlying

curve is available, but for real data sets, when one has little idea of

what the underlying curve is like, this issue clearly becomes more
difficult.

Most effective data analysis using nonparametric curve estimators
has been done by choosing the smoothing parameter by a trial and error
approach consisting of looking at several different plots representing
different amounts of smoothness. While this approach certainly allows
one to learn a great deal about the set of data, it can never be used to
convince a skeptic in the sense that a hypothesis test can. Hence there
has been a search for methods which use the data in some objective, or
"automatic” way to choose the smoothing parameter.

This paper is a survey of currently available automatic smoothing




parameter selection techniques. There are many settings in which
smoothing type estimators have been proposed and studied. Attention
will be focussed here on the two most widely studied, which are density
and regression estimation, because the lessons seem to about the same
for all settings. These problems are formulated mathematically in
Section 2.

There are also many different types of estimators which have been
proposed in each setting, see for example Prakasa Rao (1983), Silverman
(1986)., and Hiardle (1988). However all of these have the property that,
as with the moving average estimator in Figure 1, their performance is
crucially dependent on choice of a smoothing parameter. Here again the
lessons seem to be about the same, so focus is put on just one type of
estimator, that is kernel based methods. These estimators are chosen
because they are simple, intuitively appealing, and best understood.
The form of these are given in Section 2. Other important estimators,
to which the ideas presented here also apply include histograms, the
various types of splines, and those based on orthogonal series.

To find out more about the intuitive and data analytic aspects of
nonparametric curve estimation, see Silverman (1986) for density
estimation and Hiardle (1988) for regression. For an access to the
rather large theoretical literature, the monograph by Prakasa Rao (1983)
is recommended. Other monographs on curve estimation, some of which
focus on some rather specialized topics, include Tapia and Thompson
(1978), Wertz (1978), Devroye and Gyorfi (1984), Nadaraya (1983) and

Devroye (1987). Survey papers have been written on density estimation



by Wegman (1972), Tarter and Kronmal (1976), Fryer (1977), Wertz and

Schneider (1978) and Bean and Tsokos (1980). Collomb (1982, 1985)
provides a survey of nonparametric regression.

Section 2 of this paper introduces notation. Section 3 discusses
various possibilities for '"the right amount of smoothing”, and states an
important asymptotic quantification of the smoothing problem. Section 4
introduces and discusses various methods for automatic bandwidth
selection in the density estimation context. This is done for
regression in Section 5. Section 6 discusses some hybird methods and

related topics.

2. Mathematical Formulation and Notation

The density estimation problem is mathematically formulated as

follows. Use independent identically distributed observations,
Xl""'xn’ from a probability density f(x), to estimate f(x). The
kernel estimator of f, as proposed by Rosenblatt (1956) and

Parzen (1962), is given by

n

N -1

fh(x) = n .2 Kh(x—Xi).

i=1

where K is often taken to be a symmetric probability density, and
Kh(°) = K(*/h)/h. See Chapter 3 of Silverman (1986) for a good
discussion of the intuition behind this estimator and its properties.
The smoothing parameter in this estimator is h, often called the
bandwidth or window width. Note that the estimator could have been

defined without h appearing as a separate parameter, however because




the amount of smoothing is so crucial it is usually represented in this
form.

One way of formulating the nonparametric regression problem is to
think of using
Y, = m(xi) te,, i=1,....,n,

i

where the €, are mean Zero errors, to estimate the regression curve,
m(x). This setup is usually called "fixed design" regression. A widely
studied alternative is "stochastic design” regression, in which the xi's
are treated as random variables. While mathematical analysis of the two
settings requires different techniques, the smoothing aspects tend to
correspond very closely, so only the fixed design is explicilty
formulated here. See Chapter 2 of Hirdle (1988) for a formulation of
the stochastic design regression problem. Kernel estimators in

regression were introduced by Nadaraya (1964) and Watson (1964). One

way to formulate them is as a weighted average of the form

n

m (x) = ERACLRR

where the weights are defined by

n
Wi(x,h) = Kh(x—Xi) /ileh(x - Xi).
See Section 3.1 of Hardle (1988) for discussion of this estimator, and a
number of other ways of formulating a kernel regression estimator.
In both density and regression estimation, the choice of the kernel
function, K, is of essentially negligible concern, compared to choice
of the bandwdith h. This can be seen at intuitive level by again

considering Figure 1. Note that if the shape of the weight functions



appearing at the bottom is changed, the effect on the estimator will be
far less than is caused by a change in window width. See Section 3.3.2
of Silverman (1986) and section 4.5 of Hdrdle (1988) for a mathematical

quantification and further discussion of this.

3. "Right" Answers

The traditional method of assessing fhe performance of estimators
which use an automatic smoothing parameter selector, is to consider some
sort of error criterion. The usual criteria may be separated into two
classes, global and pointwise. As most applications of curve estimation
call for a picture of an entire curve, instead of its value at one
particular point, only global measures will be discussed here.

The most commonly considered global error criteria in density

estimation are the Integrated Squared Error (i.e. the L2 norm),

ISE(h) = f [?h - f]2.

and its expected value, the Mean Integrated Squared Error
MISE = E(ISE(h)).
Related criteria are the Integrated Absolute Error (i.e. the L1 norm),
e = [ | - £l
and its expected value,
MIAE = E(IAE(h)).
There are other possibilities such as weighted versions of the above, as
well as the supremum norm, Hellinger distance, and the Kullback-Leibler
distance.

In regression, one can study the obvious regression analog of the




above norms, and in addition there are other possibilities, such as the
Average Squared Error,
1322 2
ASE(R) = n7 3 Imylxy) - mx )]
and its expected value,
MASE(h) = E(ASE(h)).

For the rest of this paper, the minimizers of these criteria will
be denoted by an h with the an appropriate subscript, e.g. hHISE'

An impor;ant question is how much difference is there between these
various criteria. In Section 6 of their Chapter 5, Devroye and Gyorfi
(1984) report that there can be a very substantial difference between
hMISE and hMIAE in density estimation. However, this point is not
really settled as Hall and Wand (1988) feel that the difference between
the bandwidths which minimize pointwise absolute and squared error are
very close to being the same.

Given that there is an important difference between the squared
error and the absolute error type criteria, there is no consensus on
which should be taken as "the right answer”. Devroye and Gyorfi (1984)
point out a number of reasons for studying density estimation with
absolute error methods. This has not gained wide acceptance though, one
reason being that squared error criteria are much easier to work with
from a technical point of view. The result of this is that all of the
real theoretical breakthroughs in density estimation have come first
from considering squared error criteria, then with much more work, the

idea is extended to the absolute error case.



The issue of the difference between the random criteria, such as
ISE and IAE, and their expected values, such as MISE and MIAE, seems
more clear. In particular it has been shown by Hall and Marron (1987a)
that hISE and hMISE do converge to each other asymptotically, but at
a very slow rate, and may typically be expected to be quite far apart.
Here again there is no consensus about which should be taken as "the
right answer". ISE has the compelling advantage that minimizing it
gives the smoothing parameter which is best, for the set of data at
hand, as opposed to being best only with respect to the average over all
possible data sets, as with MISE. However, acceptance of ISE as the
"right answer"” is controversial because ISE is random, and two different
experimenters, whose data have the same underlying distributions, will

have two different "right answers”. This type of reason is why

statistical decision theory (see for example Ferguson 1967) is based on
"risk” instead of on "loss". See Scott (1988) and Carter, Eagleson and
Smith (1986) for further discussion of this issue.

One advantage of MISE is that it allows a very clean asymptotic
summary of the smoothing problem. In particular, for kernel density
estimation, if K is a probability density and f has two continuous
derivatives, then as n » ® and h - O, with nh = =,

MISE(h) = AMISE(h) + o(AMISE(h)).
where
AMISE(h) = n 'nl(k3) + nU) 25 )2y e,
see for example (3.20) of Silverman (1986). Recall from Figure 1, that

too small a window width results in too much sample variability. Note )




that this is reflected by the first term (usually called the variance
term) in AMISE becoming too large. On the other side, the fact that a
too large window width gives too much bias, is reflected in the second
term which gets large in that case.

There is a tendency to think of hAMISE as being the same as hMISE’
and this seems to be usually nearly true, but can be quite far off
sometimes. Scott (1986) has shown that for the lognormal density AMISE
and MISE will still be very far apart even for sample sizes as large as

a million.

4. Density Estimation

In this section most of the automatic bandwidth selectors proposed
for kernel density estimation are presented and discussed. It should be
noted that most of these have obvious analogs for other types of

estimators as well.

4.1 Plug-in methods

The essential idea here is to work with AMISE(h) and plug in an
estimate of the only unknown part, which is f(f")z. Variations on
this idea have been proposed and studied by Woodroofe (1970), Scott and
Factor (1981), Krieger and Pickands (1981), and Sheather (1983, 1986).
Most of the above authors consider the case of pointwise density
estimation, but the essential ideas carry over to the global case.

A drawback to this approach, i{s that estimation of f(f")2 requires

specification of a smoothing parameter. The argument is usually given
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that the final estimator is less dependent on this secondary smoothing

parameter, but this does not seem to have been very carefully
investigated. An interesting approach to the problem is given in
Sheather (1986).

A second weakness of the plug-in estimator is that it targets
AMISE, which can be substantially different from MISE.

A major strength of the plug-in selector is that, if strong enough
smoothness assumptions are made, then it seems to have much better
sample variability properties than many of the selectors in the rest of
section 4, see remark 4.6 of Hall and Marron (1987a).

For plug-in estimators in the absolute error setting, see Hall and

Wand (1988) in the case of MAE, and Hall and Wand (1989) for MIAE. d

4.2 Psuedo Likelihood Cross—-Validation

Also called Kullback-Leibler cross-validation, this was proposed
independently by Habbema, Hermans and van den Broek(1974) and by Duin
(1976). The essential idea is to choose that value of h which
minimizes the psuedo-likelihood,

n .

mf (X,).

j=1 P

However this has a trivial minimum at h = O, so the cross-validation

principle is invoked by replacing fh in each factor by the leave one

out version,

~ _1 n
fh.j(x) = (n-1) iij Kh(x—Xi).

Another viewpoint on why the leave-oneout estimator is appropriate here
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is that the original'criterion may be considered to be using the same
observations to construct the estimator, as well as assess its
performance. When the cross-validation principle (see Stone 1974) is
used to attack this problem, we arrive at the modification based on
using the leave-one-out estimator.

Schuster and Gregory (1981) have shown that this selector is
severely affected by the tail behavior of f. Chow, Geman, and Wu
(1983) demonstrated that if both the kernel and the density are
compactly supported then the resulting density estimator will be
consistent. The fact that this consistency can be very slow, and the
selected bandwidth very poor, was demonstrated by Marron (1985), who
proposed an efficient modification of the psuedo-likelihood based on
some modifications studied by Hall (1982). Hall (1988a,b) has provided
a nice characterization of the psuedo-likelyhood type of
cross-validation, by showing that it targets the bandwidth which
minimizes the Kullback-lLeibler distance between ;h and f. Hall goes
on to explore the properties of this bandwidth, and concludes that it
may sometimes be appropriate for using a kernel estimate in the
discrimination problem, but is usually not appropriate for curve
estimation. For this reason, psuedo-likelihood currently seems to be of

less current interest than the other smoothing parameter selectors

considered here.

4.3 Least Squares Cross-Validation

This was proposed independently by Rudemo (1982a) and by Bowman
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(1984). The essential idea is to target

ISE(h) = [ £2 - 2/ §f + [ 2
h h
The first term of this expansion is available to the experimenter, and
the last term is independent of h. Using a method of moments estimate
of the second term results in the criterion
]A n .
f - 23f
h j=1

which is then minimized to give a cross-validated smoothing parameter.

h.J(xj)'

The fact that the bandwidth chosen in this fashion is
asymptotically correct, under various assumptions for ISE, MISE, and
AMISE has been demonstrated under various assumptions by Hall (1983,
1985), Stone (1984), Burman (1985) and Nolan and Pollard (1987) (see
Stone 1985 for the histogram analog of this). Marron and Padgett (1987)

have established the analogous result in the case of randomly censored -

data. A comparison to an improved version of the Kullback-Leibler
cross-validation was done by Marron (1987a).

The main strength of this bandwidth is that it is asymptotically
correct under very weak smoothness assumptions on the underlying
density. Stone (1984) uses assumptions so weak that there is no
guarantee that ;h will even be consistent, but the bandwidth is still
doing as well as possible in the limit. This translates in a practical
sense into a type of robustness. The plug-in selector is crucially
dependent on AMISE being a good approximation of MISE, but least squares
cross-validation still gives good asymptotic performance, even in

situations where the MISE X AMISE approximation is very bad.




-13-

A drawback to least squares cross-validation is that the score
function has a tendency towards having several local minima, with some
spurious ones often quite far over on the side of undersmoothing. This
does not seem to be only a small sample aberation, as Scott and Terrell
(1987) noticed it in their simulation study even for very large samples.
For this reason it is recommended that minimization be done by a grid
search through a range of h’s, instead of by some sort of
computationally more efficient step-wise minimization algorithm.

Another major weakness of the least squares cross-validated
smoothing parameter is that it is usually subject to a great deal of
sample variability, in the sense that for different data sets from the
same distributions, it will typically give much different answers. This
has been quantified asymptotically by Hall and Marron (1987a), who show
that the relative rate of convergence of the cross-validated bandwidth

to either of h or hMISE is excruciatingly slow. It is interesting

ISE
though that the noise level is of about the same order as the relative
difference between hISE and hMISE' This is the result referred to in
Section 3, concerning the practical difference between random error
criteria and their expected values.

While the noise level of the cross-validated bandwidth is very
large it is rather heartening that the same level exists for the
difference between the two candidates for "optimal”, in the sense that
the exponents in the algebraic rate of convergence are the same. This

leads one to suspect that the rate of convergence calculated by Hall and

Marron(1987a) is in fact the best possible. This was shown, in a
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certain minimax sense, by Hall and Marron (1987b). To keep this in

perspective though, note that the constant multiplier of the rate of
convergence of the optimal bandwidths to each other is typically smaller
than for cross-validation. Since the rates are so slow, it is these
constants which are really important. See Marron (1987b) for further
discussion.

Recall that an attractive feature of‘the plug-in bandwidth
selectors was their sample stability. These selectors have a faster
hAMISE than the rate at which hISE and hMISE

come together. This does not contradict the above minimax result

rate of convergence to

because this faster rate requires much stronger smoothness assumptions.
In settings of the type which drive the minimax result, the plug-in

selectors will be subject to much more sample noise, and also hAMISE

will be a very poor approximation to hAMISE'
A somewhat surprising fact about the least squares cross-validated
bandwidth is that, although its goal is hISE' these two random
variables are in fact negatively correlated! This means that for those
data sets where hISE is smaller than usual, the cross-validated
bandwidth tends to be bigger than usual, and vice versa. This
phenomenon was first reported in Rudemo (1982a), and has been quantified
theoretically by Hall and Marron (1987a). An intuitive explanation for
it has also been provided by Rudemo, in terms of "clusterings" of the
data. If the data set is such that there is more clustering than usual,

note that hISE will be larger than usual. because the spurious structure

needs to be smoothed away, while cross-validation will pick a smaller -
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bandwidth than usual because it sees the clustering as some fine
structure that can only be resolved with a smaller window. On the other

hand, if the data set has less clustering than usual, then h will be

ISE
smaller than usual, so as to cut down on bias, while cross-validation
sees no structure, and haence takes a bigger bandwidth. An interesting
consequence of this negative correlation is that if one could find a
stable "centerpoint”, then (if ISE is accepted as the right answer) it
would be tempting to use a bandwidth which is on the oppostie side of
this from hCV'

A last drawback of least squares cross-validation is that it can be
very expensive to compute, especially when the recommended grid search
minimization algorithm is used. Two approaches to this problem are the
Fast Fourier Transform approximation ideas described in section 3.5 of

Silverman (1986), and the Average Shifted Histogram approximation ideas

described in Section 5.3 of Scott and Terrell (1987).

4.4 Biased Cross-Validation

This was proposed and studied by Scott and Terrell (1987). It is a
hybrid combining aspects of both plug-in methods, and also least squares
cross-validation. The essential idea is to minimize, by choice of h,
the following estimate of AMISE(h),

R+ R, )
This differs from the plug-in because the same h that is being
assessed by this score function is used in the estimate of f(f")2.

Scott and Terrell(1987) show that the biased cross-validated
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bandwidth has sample variability with the same rate of convergence as
least squares cross-validation, but with a typically much smaller
constant coefficient. This is crucial as the rates are so slow that it
is essentially the constant coefficients that determine performance of
the selectors. Scott and Terrell (1987) also demonstrate the superior
performance of biased cross-validation in some settings by simulation
results.

A drawback of biased cross-validation is that, like the plug-in,
its effective performance requires much stronger smoothness assumptions
than required for least squares cross-validation. It seems possible
that in settings where biased cross-validation is better than least
squares cross—validation, the plug-in will be better yet, and in
settings where the plug-in is inferior to least squares
cross-validation, biased cross-validation will be as well, although this
has not been investigated yet.

Another weak point of biased cross-validation is that for very
small samples, on the order of n = 25, Scott and Terrell (1987) report
that the method may sometimes fail all together, in the sense that there
is no minimum. This seems to be not as bad as the spurious local minima
that occur for least squares cross-validation, because at least it is
immediately clear that something funny is going on. Also unlike the
spurious minima in least squares cross-validation, this problem seems to

disappear rapidly with increasing sample size.

4.5 Oversmoothing
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This idea has been proposed in Chapter 5, Section 6 of Devroye and
Gyorfi (1984) and by Terrell and Scott (1985). The essential idea is to

note that

IS
wise = (202

1/5 _-1/5
n .

If the scale of the f distibution is controlled, say by rescaling so
that its variance is equal to one, then f(f")2 has a lower bound over
the set of all probability densities. When this lower bound is
substitued, and the scale is taken properly into account, say using some
estimate of the sample variance, then a bandwidth is arrived at which
will be asymptotically bigger than any of the squared error notions of
"optimal"” described above. The version described here is that of
Terrell and Scott, the Devroye and Gyorfi version is the L1 analog of
this idea.

Terrell and Scott (1985) show that for unimodal densities, such as
the Gaussian, the difference between the oversmoothed bandwidth and
hAMISE is often surprisingly small. Another benefit of this is that it
is very stable accross samples because the only place the data even
enter are through the scale estimate, which has a fast parametric rate
of convergence.

Of course the oversmoothed bandwidth has the obvious drawback that
it can be very inappropriate for multimodal data sets, which

unfortunately are the ones that are most interesting when data is being

analyzed by density estimation techniques.
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‘ A possible application of the oversmoothed bandwidth, that has been

suggested in some oral presentations given by David Scott, is that it
can be used to provide an upper bound to the range of bandwidths
considered by minimization based techniques such as the various types of
cross-validation. The usefulness of this idea has not yet been

investigated.

5 Regression Estimation

Note that two of the ideas proposed above for density estimation,
the plug-in selectors and biased cross-validation, can be directly
carried over to the regression setting. Neither of these ideas has been
investigated yet (although see Miiller and Statdmiiller 1987 for a local
criterion based plug-in selector). In this section most of the

. automatic bandwidth selectors that have been considered for kernel

regression estimation are presented and discussed. Again note that the

ideas here have obvious analogs for other types of estimators as well.

5.1 Cross-validation

This was first considered in the nonparametric curve estimation
context by Clark (1975) for kernel estimators and by Wahba and
Wold (1975) for spline estimators. The essential idea is to use the
fact that the regression function, m(x) is the best mean square
predictor of a new observation taking at x. This suggests choosing the
bandwidth which makes ;h(x) a good predictor, or in other words taking

the minimizer of the estimated prediction error,
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-13 ~ 2

EPE(h) = n jzl[Yj - mh(xj)] .
This criterion has the same problem that was observed in section 4.2,
namely that it has a trivial minimum at h = 0. As above this can be
viewed as being caused by using the same data to both construct and
assess the estimator, and a reasonable approach to this problem is
provided by the cross-validation principle. Hence the cross-validated
bandwidth is the one which minimizes the criterion obtained by replacing
;h(xj) by the obvious leave-one-out version. See Hdrdle and Marron
(1985a) for a motivation of this criterion that is very similar in
spirit to that for density estimation least squares cross-validation, as
described in Section 4.3.

The fact that the bandwidth chosen in this fashion is
asymptotically correct was established by Rice (1984) in the fixed
design context, and by Hirdle and Marron (1985a) in the stochastic
design setting.

Hirdle, Hall and Marron (1988) have shown that this method of
bandwidth selection suffers from a large amount of sample variability,
in a sense very similar to that described for the least squares
cross-validated density estimation bandwidth in Section 4.3. In
particular, the excruciatingly slow rate of convergence, and the
negative correlation between the cross-validated and ASE optimal
bandwidths are here also. See Marron (1987) for further discussion.

One thing that deserves further comment is that Rudemo has provided

an intuitive explanation of the cause of the negative correlation in
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this setting, which is closely related to his intuition for density

estimation, as described near the end of Section 4.3. This time focus
on the lag-one serial correlation of the actual residuals (i.e. on
p(ei,ei+1)). Under the assumptions of independent errors, this will be
zero on the average, but for any particular data set, the empirical
value will typically be either positive or negative. Note that for data
sets where the empirical serial correlation is positive, there will be a
tendency for residuals to be positive in "clumps"” (corresponding to the
"clusters" described in Section 4.3). This clumping will require hASE
to be larger than usual, so as to smooth them away. Another effect is
that cross—-validation will feel there is some fine structure present,
which can only be recovered by a smaller bandwidth. For those data sets
with a negative empirical correlation, the residuals will tend to

alternate between positive and negative. The effect of this is that the

sample variability will be smaller than usual, so ASE can achieve a
smaller value by taking a small bandwidth which eliminates bias. On the
other hand, cross-validation does not sense any real structure, and

hence selects a relatively large bandwidth.

5.2 Model Selection Methods

There has been a great deal of attention to a problem very closely
related to nonparametric smoothing parameter selection, which is often
called "model selection”. The basic problem can perhaps be best
understood in the context of choosing the degree of a polynomial, for a

least squares fit of a polynomial regression function, although the
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largest literature concerns choice of the order of an ARMA fit in time
series analysis. To see that these problems are very similar to
bandwidth selection, note that when too many terms are entered into a
polynomial regression, the resulting curve will be too wiggly, much as
for the small bandwidth curve in Figure 1. On the other hand if too few
terms are used, there will not be enough flexibility to recover all the
features of the underlying curve, resulting in an estimate rather
similar to the large bandwidth curve in Figure 1.

Given the close relationship between these problems, it is not
surprising that there has been substantial cross—-over between these two
areas. The main benefit for nonparametric curve estimation has been
motivation for a number of different bandwidth selectors. Rice (1984)
has shown that the bandwidth selectors motivated by a number of these
(based on the work of Akaike, Shibata and others), as well as the
Generalized Cross Validation idea of Craven and Wahba (1979), all have
the following structure. Choose the minimizer of a criterion of the
form

EPE(h)¥(h),
where EPE(h) was defined in Section 5.1 above. The function ¥(h) can be
thought of as a correction factor, which has an effect similar to
replacing the estimator by its leave-one-out version, as done by
cross-validation, as described in Section 5.1 above. Rice (1984) shows
that all of these bandwidths asymptotically come together. and also
converge to hMASE' see Li (1987) for a related result. Hirdle and

Marron (1985b) show that extra care needs to be taken with these



selectors when the design is not equally spaced, and the errors are not
heteroscedastic. See Silverman (1985) for related discussion in the
context of spline estimation.

Deeper properties, concerning the sample variability of these
bandwidths, have been investigated by Hardle, Hall and Marron (1988).
It is shown there that, in a much deeper sense than that of Rice (1984),
all of these bandwidths are asymptotically equivalent to each other and
also to the cross-validated bandwidth discussed in Section 5.1. Hence
all properties described for the cross-validated bandwidth apply to

these as well.

5.3 Unbiased Risk Estimation

This consists of yet another method of adjusting the estimated

prediction error defined in section 5.1. This essential idea was
proposed by Mallows (1973) in the model selection context, and comes
from considering the expected value of EPE(h). When this is done, it
becomes apparent that the bias towards h too small can be corrected by
minimizing a criterion of the form

EPE(h) + 20°K(0)/nh,
where ;2 is some estimate of the residual variance, 02 = E[eizj.
There has been substantial work done on the nonparametric estimation of
02, see for example Kendall (1976). For more recent references, see
Rudemo (1982b), Rice (1984), Gasser, Sroka and Jennen (1986) and
Eagleson and Buckley (1987) for discussion of possible estimates of 02.

The results of Rice (1984) and Hirdle, Hall and Marron (1988),




described above, apply here to this type of selector as well. For an
interesting connection to Stein shrinkage estimation see Li(1985).

The main drawback to this type of selector is that it depends on an
estimate of 02. although this should not be too troubling, because
there are estimates available with a fast parametric convergence rate,
so the amount of noise in this estimation is at least asymptotically
negligible. Hirdle, Hall and Marron (1988) have demonstrated that there
is a sense in which the other bandwdith selectors are essentially doing
the same thing as the unbiased risk estimator, except that the variance
estimation is essentially being provided by EPE(h).

An advantage of this selector over the selectors in sections 5.1
and 5.2 is that it appears to handle settings in which reasonable values
of the bandwidth are close to h = 0. This happens typically when there
is very small error variance, so not much local averaging needs to be
done. It is immediately clear that cross-validation suffers in this
type of context, but it can also be seen that the other selectors have

similar problems. These issues have not been well investigated yet.

6. Extensions, Hybrids and Hopes for the Future

There are many possibilities for modifying the above selectors, in
the hopes of improving them.

Bhattacharya and Mack (1987) have studied a stochastic process that
is closely related to the plug-in bandwidth selectors (they work
explicitly with the nearest neighbor density estimator, but it appears

that analogous ideas should hold for conventional kernel density and
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regression estimators as well). This gives a certain linear model,
which is then used to give an improved bandwidth. It seems there may be
room for improvement of this type of some of the other bandwidth
selectors described abouve as well.

Burman (1988) provides a detailed analysis and suggests and
improvement of v-fold cross-validation. The basic idea here is to
replace the leave-one-out estimators by leave-several-out versions, and
then assess the performance against each of the left out observations.
This has the distinct advantage that it cuts down dramatically on the
amount of computation required, at least if direct implementation is
used (there seems to be less gain if an algorithm of one of the types
described at the end of Section 4.3 is used). If too many observations

are left out, then note that the selected smoothing parameter should be

reasonably good, except that it will be appropriate for the wrong sample
size (the size of the sample minus those left out). Burman provides a
nice quantification of this, and goes on to use the quantification to
provide an appropriate correction factor. Burman also provides similar
results for another modification of cross-validation based on "repeated
laerning testing" methods.

Another means of modifying cross-validation, and also a number of
the other automatic bandwidth selectors, is through partitioning, as
proposed by Marron (1987c). The basic idea here is to first partition
the data into subsets. In density estimation this could be done
randomly, while it may be more appropriate to take every k-th point in

regression. Next construct the cross-validation score for each sample .




separately, and find the minimizer of the average of these score
functions. When this is rescaled to adjust for the fact that the subset
cross—-validation scores are for much smaller sample sizes, the resulting
bandwidth will often have, up to a point, much better sample stability
than ordinary cross-validation. A drawback to this approach is that one
must decide on the number of subsets to use, and this problem seems to
closely parallel that of smoothing parameter selection.

N. I. Fisher has pointed out that partitioned cross-validation
seems subject to a certain inefficiency, caused by the fact that
observations are not allowed to "interact” with observations in the
other subsets. He then proposed overcoming this problem by replacing
the average over cross-validation scores for the partition subsets by an
average of the scores over all possible subsets of a given size. Of
course there are far too many subsets to actually calculate this score
function, so an average over some randomly selected subsets should
probably be implemented. This idea has yet to be analyzed, although
again the subsample size will clearly be an important issue.

Wolfgang Hirdle has proposed another possibility along these lines,
for density estimation. The idea is to minimize a cross—-validation
score based on a subsample consisting of say every k-th order statistic,
or perhaps of averages of blocks of k order statistics. The resulting
sample would be much more stable with respect to the type of clusterings
which drive Rudemo’'s intuition, regarding the noise in least-squares
cross-validation described near the end of Section 4.3. This idea has

also not been investigated, and here again choice of k seems crucial.
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7. Conclusions

It should be clear from the above that the field of smoothing
parameter selection is still in its infancy. While many methods have
been proposed, none has emerged as clearly superior. There is still
much comparison to be done, and many other possibilities to be
investigated.

The implications, in terms of actual data analysis, of what is
known currently about automatic methods of smoothing parameter
selection, are that there is still no sure-fire replacement for the
traditional trial and error method. This is where one plots several
smooths, and then chooses one based on personal experience and opinion.
Indeed none of these automatic methods should be used without some sort
of verification of this type.

Scott and Terrell (1987) have suggested the reasonable idea of
looking at several automatically selected bandwidths, with the idea that
they are probably acceptable when they agree, and there is at least a
good indication that special care needs to be taken when they disagree.
There are many things yet to be investigated in connection to this idea,
especially in terms of how correlated all these automatically selected
bandwidths are to each other. Also there is the issue of how many
different bandwidths the user is willing to consider. Hopefully the

field can at least be narrowed somewhat.
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Caption

Figure 1: Simulated regression setting. Solid curve is underlying
regression. Residuals are Gaussian. Dashed curves are moving wieghted
averages, with Gaussian weights, represented at the bottom. Standard
deviations in the weight functions are: Figure 1b, 0.015; Figure lc,

0.04; Figure 1d, 0.12.
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