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1 Introduction

In Cartesian coordinates, a plane curve may be specified through an implicit
equation f(x, y) = 0 or a parametric equation r(t) = (x(t), y(t)). The former
amounts to defining a curve through a predicate function, whose evaluation
indicates whether or not a given point is on the curve. The latter corresponds
to a generating function, whose evaluation furnishes a sequence of points on
the curve as the parameter t increases. Parametric representations are almost
universally preferred for applications such as computer graphics, computer–
aided design, robotics, and real–time motion control, since the task of tracing
a curve based upon the implicit equation is a non–trivial problem.

However, curves parameterized by “simple” (i.e., polynomial or rational)
functions are not without shortcomings. In general, the variation of the curve
parameter t bears no relation to the curve geometry. Ideally, one would like
to use the arc length s as the curve parameter, but the only curve that admits
rational arc–length parameterization is a straight line [30]. Valuable progress
toward this impossible ideal can nevertheless can be achieved by considering
curves whose parametric speed σ = ds/dt — the rate of change of arc length
with respect to the parameter — is a polynomial or rational function.

This is the distinctive feature of the Pythagorean–hodograph (PH) curves,
whose derivatives r′(t) = (x′(t), y′(t)) have coordinate components satisfying
[29] the Pythagorean condition

x′2(t) + y′2(t) = σ2(t) (1)

for some polynomial or rational function σ(t). This special property endows
PH curves with many important computational advantages over “ordinary”
polynomial/rational curves. For example, they have rational offset curves —
i.e., loci at each fixed distance d from a given curve, in the normal direction.
The arc length of any segment of a (polynomial) PH curve can be computed
by simply evaluating a polynomial, an invaluable property in motion control.
In the design of free–form shapes by interpolation of discrete data, PH curves
yield “fairer” shapes (with less curvature variation) than ordinary polynomial
curves. Spatial PH curves admit rational rotation–minimizing frames, useful
in computer animation, robotics, and spatial path planning.

This study presents the implementation of a suite of key algorithms for
constructing, analyzing, and manipulating planar PH curves. The algorithms
have attained a high degree of maturity in their development, and are thus
ready for systematic codification and dissemination. The focus at present is
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on the polynomial PH curves, that satisfy (1) with x′(t), y′(t), σ(t) in the ring
of real polynomials, and extensive use is made of the complex representation
[9], which affords compact and efficient algorithm formulations.

The construction of rational PH curves, satisfying (1) with x′(t), y′(t), σ(t)
in the field of real rational functions, employs an entirely different approach
[33, 43] based on the dual representation — i.e., the interpretation of a plane
curve as the envelope of its tangent lines. Moreover, rational PH curves are
less useful than polynomial PH curves in certain applications, since in general
they do not have rational arc lengths (the integral of a rational function may
incur transcendental terms). A more detailed discussion of the relationships
between polynomial and rational PH curves may be found in [27].

Algorithms for spatial PH curves are also not addressed at present. These
curves were first discussed in [31], but their proper characterization requires
more sophisticated algebraic models, based [7, 15] on quaternions or the Hopf
map from R

4 to R
3. Although considerable progress on algorithms for their

construction has been made [16, 17, 23, 25] — including special PH curves
with rational “rotation–minimizing” frames [14, 18, 19] — the algorithms are
inherently more complicated than for planar PH curves, because of the need
to determine appropriate values for certain free parameters. Since algorithms
for spatial PH curves are still under active investigation, it seems premature
to attempt a systematic codification and implementation at this time.

The algorithm descriptions provided below specify the input and output
in each context, and provide a brief synopsis of the computations required to
derive the latter from the former. These descriptions are by necessity skeletal
in nature, but in each case appropriate references are provided so the reader
can consult complete derivations and computational details. The monograph
[13] provides a comprehensive, up–to–date single source for planar PH curves,
and a much briefer introduction to them may be found in [12].

In recent years PH curves have found application in diverse contexts, such
as real–time interpolator algorithms for computer numerical control (CNC)
machines [21, 22, 32, 35]; spatial rigid–body motion design for animation
and robotics [18, 19]; vision–based motion tracking systems [4]; mobile robot
path planning [3] and cooperative path planning for unmanned aerial vehicles
[41, 44, 45, 46]; reconstruction of planar shapes from medial axis transforms
[6, 37, 38]; and artistic or aesthetic design [36]. It is hoped that this software
library will encourage further use in a broad spectrum of applications.

Since the simplest non–trivial PH curves, the cubics, have limited shape
flexibility, we focus herein on the PH quintics. These are the lowest–order PH
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curves capable of inflecting, and interpolating arbitrary first–order Hermite
data, and are therefore suitable for free–form design applications.

The remainder of this paper is organized as follows. After a brief review
of the complex representation for planar PH curves in Section 2, it is used to
derive some basic properties in Section 3 — namely, the parametric speed and
arc length polynomials, and the unit tangent, normal, and curvature. The
rational offset curves to a planar PH quintic r(t), i.e., the loci at a given fixed
distance d from r(t) in the normal direction, are discussed in Section 4. An
exact algorithm to compute the bending energy (the integral of the square of
curvature with respect to arc length) for planar PH quintics is then presented
in Section 5. The first–order PH quintic Hermite interpolants, discussed in
Section 6, highlight a characteristic feature of all PH curve constructions —
a multiplicity of formal solutions (due to the non–linear defining equations),
and the need to identify the “good” interpolant among them. In Section 7 the
two–point Hermite interpolation problem is generalized to the interpolation
of a sequence of N + 1 points in the plane, under prescribed end conditions,
by a C2 PH quintic spline curve. This incurs a (sparse) system of quadratic
equations in complex variables, which must be solved by iterative methods,
and an appropriate identification of starting values is critical for efficient and
robust convergence on the “good” interpolant. Section 8 describes an inter-
active implementation of the PH curve construction and analysis algorithms,
based on the MFC and OpenGL libraries. Finally, Section 9 briefly describes
the accompanying software packages, and Section 10 summarizes the key
capabilities and potential applications of the PHquintic library.

2 Complex representation

We focus here on primitive PH curves with gcd(x′(t), y′(t)) = constant. Then
a sufficient and necessary condition for satisfaction of (1) is that x′(t), y′(t)
should be expressible in terms of relatively prime real polynomials u(t), v(t)
in the form

x′(t) = u2(t) − v2(t) , y′(t) = 2u(t)v(t) ,

and hence σ(t) = u2(t) + v2(t). The complex representation [9] succinctly
embodies this structure. Regarding plane curves as complex–valued functions
r(t) = x(t) + i y(t) of a real parameter t [50], the PH curves are those curves
whose derivatives correspond to the perfect square r′(t) = w2(t) of a complex
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polynomial1 w(t) = u(t) + i v(t) with gcd(u(t), v(t)) = constant.
Given a degree–m complex polynomial

w(t) = u(t) + i v(t) =

m
∑

k=0

wk

(

m

k

)

(1 − t)m−ktk (2)

with Bernstein coefficients wk = uk + i vk for k = 0, . . . , m, a PH curve of
degree n = 2m + 1 is obtained by integration of r′(t) = w2(t). The control
points p0, . . . ,pn in the Bézier representation

r(t) =
n

∑

k=0

pk

(

n

k

)

(1 − t)n−ktk

of this PH curve are determined entirely by the complex values w0, . . . ,wm

(with p0 being an arbitrary integration constant). The Bernstein polynomial
form is used exclusively here, on account of its inherent numerical stability
[28] and its close relation to the Bézier curve representation [8]. A library of
functions for Bernstein–form polynomials has been presented in [47].

A straight line is trivially a PH curve, corresponding to the choice w(t) =
constant. The simplest non–trivial PH curves are cubics, defined by a linear
polynomial w(t). The PH cubics can be characterized by simple geometrical
constraints on their Bézier control polygons [29], and correspond to scaled,
rotated, and re–parameterized segments of a unique curve — the Tschirnhaus

cubic. Since PH cubics have limited shape freedoms, we focus henceforth on
the PH quintics, the lowest–order PH curves that may inflect and interpolate
first–order Hermite data. Choosing the quadratic polynomial

w(t) := w0(1 − t)2 + w12(1 − t)t + w2t
2 (3)

and integrating r′(t) = w2(t), one finds that the PH quintics are specified by

1Bold symbols are used to denote both complex values and points or vectors in R
2.
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control points of the form

p1 = p0 +
1

5
w2

0 ,

p2 = p1 +
1

5
w0w1 ,

p3 = p2 +
1

5

2w2
1 + w0w2

3
,

p4 = p3 +
1

5
w1w2 ,

p5 = p4 +
1

5
w2

2 . (4)

The complex representation greatly simplifies many fundamental algorithms
for planar PH curves, and is systematically used herein. The data defining a
single PH quintic segment is encapsulated in the following C struct.

struct PHquintic {
complex p[6] ; /* Bezier control points of PH quintic */

complex w[3] ; /* Bernstein coefficients of w(t) polynomial */

double sigma[5] ; /* parametric speed Bernstein coefficients */

double s[6] ; /* arc length Bernstein coefficients */

} ;

Here the complex arrays p[6] and w[3] store the control points p0, . . . ,p5

and the coefficients w0,w1,w2 of the quadratic polynomial (3), while the real
arrays sigma[5] and s[6] store the coefficients of the parametric speed and
arc length polynomials (see Section 3 below). This specification is redundant,
since the other data can be reconstructed from p0 and w0,w1,w2 alone.
However, pre–computing and storing the full contents of a PHquintic struct
can save considerable effort in subsequent usage of the PH quintic it defines.

3 Arc length, tangent, curvature

The parametric speed, tangent, and curvature of the PH curve r(t) defined
by integrating r′(t) = w2(t) may be expressed [9] as

σ(t) = |w(t)|2 , t(t) =
w2(t)

σ(t)
, κ(t) = 2

Im(w(t)w′(t))

σ2(t)
.
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The parametric speed is a polynomial in t, while the tangent and curvature
are rational functions of t. The unit normal, n(t) = − i t(t), is also rational.
Since σ(t) is a polynomial, the cumulative arc length

s(t) :=

∫ t

0

σ(ξ) dξ

is likewise a polynomial in t. For a PH quintic, the parametric speed is the
quartic polynomial

σ(t) = |w(t)|2 =

4
∑

k=0

σk

(

4

k

)

(1 − t)4−ktk

with Bernstein coefficients

σ0 = |w0|2 ,

σ1 = Re(w0w1) ,

σ2 =
2 |w1|2 + Re(w0w2)

3
, (5)

σ3 = Re(w1w2) ,

σ4 = |w2|2 ,

and the arc length is the quintic polynomial

s(t) =
5

∑

k=0

sk

(

5

k

)

(1 − t)5−ktk

with Bernstein coefficients defined by s0 = 0 and

sk =
1

5

k−1
∑

j=0

σj , k = 1, . . . , 5 .

The length of any segment t ∈ [ t1, t2 ] of a PH quintic is simply s(t2)− s(t1).
The polynomial nature of the parametric speed facilitates the formulation of
real–time interpolator algorithms for motion control applications [21, 22, 32].
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4 Offset curves

The offset (or parallel) curve at a fixed normal distance d from a given plane
curve r(t) is the locus defined by

rd(t) := r(t) + dn(t) ,

where n(t) is the unit normal to r(t). For general polynomial/rational curves,
the offset rd(t) is not rational, because the unitization of n(t) involves division
by |r′(t)| =

√

x′2(t) + y′2(t). For a PH curve, however, rd(t) can be exactly
specified as a rational curve for any d, since n(t) depends rationally on t.

In the case of a PH quintic r(t), the offsets are degree 9 rational curves.
Let the control points of r(t) be expressed in homogeneous coordinates as

Pk = (1, xk + i yk) , k = 0, . . . , 5 ,

with forward differences

∆Pk := Pk+1 −Pk = (0, ∆xk + i ∆yk) , k = 0, . . . , 4 .

The offset curve can then be expressed as

rd(t) =
X(t) + i Y (t)

W (t)

where W (t), X(t) + i Y (t) are polynomials of degree 9, whose coefficients

Ok = (Wk, Xk + i Yk) , k = 0, . . . , 9

define the Bézier control points of the rational offset curve. The homogeneous
coordinates for the control points of rd(t) may be expressed [29] in terms of
those of r(t) and the parameteric speed coefficients (5) as

Ok =

min(4,k)
∑

j=max(0,k−5)

(

4

j

)(

5

k − j

)

(

9

k

) (σjPk−j − i 5d ∆Pj) , k = 0, . . . , 9 .

The binomial coefficient factor can be simplified by noting that
(

4

j

)(

5

k − j

)

(

9

k

) =

(

k

j

)(

9 − k

4 − j

)

(

9

4

) =

(

k

j

)(

9 − k

4 − j

)

126
,
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and the homogeneous coordinates for the offset curve control points can thus
be expressed for k = 0, . . . , 9 as

Wk =
1

126

min(4,k)
∑

j=max(0,k−5)

(

k

j

)(

9 − k

4 − j

)

σj ,

Xk =
1

126

min(4,k)
∑

j=max(0,k−5)

(

k

j

)(

9 − k

4 − j

)

(σjXk−j + 5 d ∆Yj) ,

Yk =
1

126

min(4,k)
∑

j=max(0,k−5)

(

k

j

)(

9 − k

4 − j

)

(σjYk−j − 5 d ∆Xj) .

The format of the function that computes the offset to a single PH quintic
segment is as follows. The struct curve passes the data that defines the PH
quintic to the function, the value d defines the (signed) offset distance, and
the homogeneous coordinates of the control points for the degree 9 rational
offset curve are returned in the arrays W[], X[], Y[].

void PHquintic offset( double d ,

struct PHquintic *curve ,

double W[] , double X[] , double Y[] )

Figure 1: Left: the offset to a PH quintic as a degree 9 rational Bézier curve.
Right: two–sided family of offsets to a PH quintic (the “swallowtails” develop
when the offset distance exceeds the smallest concave radius of curvature).

In some cases it may be preferable to treat rd(t) as simply the sum of
the PH quintic r(t) and the rational vector dn(t) of degree 4, rather than

8



explicitly constructing the control points of the degree 9 rational Bézier form.
Figure 1 illustrates the rational offset curves to a planar PH quintic.

5 Elastic bending energy

When an initially–straight elastic beam is bent into a curved shape, the strain
energy is proportional to the integral of the squared curvature with respect to
arc length. Minimizing this integral, under specified geometrical constraints,
is often used as a criterion to ensure fair curve shapes [8]. Unlike “ordinary”
polynomial curves, the PH curves admit closed–form evaluation of the strain
energy integral through a partial fraction decomposition of the integrand.

For a PH curve of total arc length S, constructed by integrating r′(t) =
w2(t), the strain energy integral may be expressed as

U :=

∫ S

0

κ2 ds = 4

∫ 1

0

Im2(w(t)w′(t))

|w(t)|6 dt . (6)

Complete details on evaluating this integral for the case of the PH quintics,
corresponding to the choice (3) of w(t), may be found in [10]. Here we simply
summarize the steps required for implementation. It is convenient to re–write
(3) in the form

w(t) := k (t − a)(t − b) ,

where k = w2 − 2w1 + w0 and the roots of w(t) are

a,b =
w0 −w1 ±

√

w2
1 − w0w2

w2 − 2w1 + w0
.

Defining −π < arg(z) ≤ +π for any complex number z, the definite integral
(6) may then be expressed [10] as

U =
4

|k|2
{

2 Re(a1) ln
|1 − a|
|a| − 2 Im(a1) [ arg(1 − a) − arg(−a) ]

+ 2 Re(b1) ln
|1 − b|
|b| − 2 Im(b1) [ arg(1 − b) − arg(−b) ]

− Re

[

2 a2

a(1 − a)
+

2b2

b(1 − b)
+

(2a− 1) a3

a2(1 − a)2
+

(2b− 1)b3

b2(1 − b)2

]}

,
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where, with α = Im(a) and β = Im(b), we define a1, a2, a3 and b1,b2,b3 by

a3 =
i

8 α (a − b)(a− b)
,

b3 =
i

8 β (a − b)(a − b)
,

a2 =

[

3i

2α
+

1

a − b
− 3

a− b

]

a3 ,

b2 =

[

3i

2β
− 1

a − b
+

3

a− b

]

b3 ,

a1 =
3i

2α
a2 +

[

3

4α2
− 2

(a− b)2
+

6

(a− b)2
− 1 − 2β/α

(a − b)(a − b)

]

a3 ,

b1 =
3i

2β
b2 +

[

3

4β2
− 2

(a − b)2
+

6

(a − b)2
− 1 − 2α/β

(a− b)(a − b)

]

b3 .

It is also possible to derive an indefinite integral expression U(t), allowing the
bending energy of any segment t ∈ [ t1, t2 ] to be determined as U(t2)−U(t1)
— see [10] for complete details.

The format of the function that computes the bending energy of a single
PH quintic segment is as follows. The struct curve passes the data defining
the PH quintic to the function, and the computed bending energy is returned
as the value of the function.

double PHquintic energy( struct PHquintic *curve )

6 First–order Hermite interpolants

The first–order Hermite interpolation problem entails construction of a PH
quintic r(t), t ∈ [ 0, 1 ] with prescribed initial and final points and derivatives:
r(0) = pi, r′(0) = di and r(1) = pf , r′(1) = df . On substituting (3) into
r′(t) = w2(t), interpolation of the end derivatives yields

w2
0 = di and w2

2 = df . (7)

Also, integrating r′(t) = w2(t) with r(0) = pi gives the equation

w2
0 + w0w1 +

2w2
1 + w0w2

3
+ w1w2 + w2

2 = 5 ∆p , (8)
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where ∆p := pf−pi. Writing di = di exp(iφi) and df = df exp(iφf), equations
(7) have the solutions

w0 = η0

√

di exp(i1
2
φi) and w2 = η2

√

df exp(i1
2
φf) , (9)

where η0 = ±1 and η2 = ±1. Regarding (8) as a quadratic equation

2w2
1 + 3 (w0 + w2)w1 + 3 (w2

0 + w2
2) + w0w2 − 15 ∆p = 0

in w1, it has the solutions

w1 = − 3

4
(w0 + w2) +

η1

4

√

120 ∆p− 15 (w2
0 + w2

2) + 10w0w2 , (10)

where η1 = ±1. The quantities η0, η1, η2 reflect three independent sign choices
arising in the solution, so one might expect eight distinct curves. However, if
w0,w1,w2 is any particular solution, then −w0,−w1,−w2 is also a solution,
defining exactly the same curve. Hence, there are in general just four distinct
interpolants, which may be generated by choosing η1 = 1 and exercising the
four sign combinations represented by η0 = ±1 and η2 = ±1.

Since p1 = p0 + 1
5
r′(0) and p4 = p5− 1

5
r′(1), one may regard the input to

this problem as specifying the initial and final pairs of control points — p0,p1

and p4,p5 — and the algorithm then “fills in” the control points p2,p3 so as
to obtain a PH quintic. This interpretation offers a control–polygon approach
to the construction of PH quintics. Since it is perhaps more intuitive than
specifying end derivatives, we adopt it in the implementation.

A number of strategies for selecting the η0, η2 combination that identifies
the “good” Hermite interpolant have been proposed, including minimization
of the absolute rotation index [26]; absence of anti–parallel tangents compared
to the “ordinary” cubic interpolant [39]; and analysis of the winding number

of the closed loop formed by the hodographs of the PH quintic and “ordinary”
cubic [5]. Here we choose the “good” interpolant to be the solution with the
least value of the absolute rotation index, defined by

Rabs =
1

2π

∫ 1

0

|κ(t)| σ(t) dt . (11)

Rabs measures the “total turning” of the curve tangent — i.e., clockwise and
anti–clockwise tangent rotations do not cancel each other.
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To compute Rabs, the input points p0,p1,p4,p5 are first transformed [26]
to canonical form2 data q0,q1,q4,q5 defined by qi = (pi −p0)/(p5 −p0), so
that q0 = 0, q5 = 1. The Hermite interpolation problem is then solved using
q0,q1,q4,q5, and for each solution k, a,b are defined in terms of w0,w1,w2

as in Section 5. We then have

Rabs =
1

π
(∠ 0 a 1 + ∠ 0b 1) ,

when a and b have imaginary parts of the same sign. If the imaginary part
of a and b are of opposite sign, then

Rabs =
1

π

N
∑

k=0

|∠ tk a tk+1 − ∠ tk b tk+1 | ,

where t0 = 0, tN+1 = 1 and t1, . . . , tN (N ≤ 2) are the ordered roots3 on
t ∈ (0, 1) of the (real) quadratic equation

Im(a + b) t2 − 2 Im(ab) t + Im(|a|2b + |b|2a) = 0 . (12)

Here ∠ u z v is the angle at the vertex z of a complex–plane triangle whose
other vertices are at the values u, v on the real axis. To restore the canonical–
form solution to the original coordinate system, the values w0,w1,w2 must
be multiplied by

√
p5 − p0 (either complex root can be used). The control

points of the PH quintic Hermite interpolant can then be computed from (4).
Figure 2 shows some examples of PH quintics constructed in this manner.

The format of the function that constructs a single PH quintic segment
is as follows. The complex variables p0, p1, p4, p5 pass the initial and final
pairs of control points to the function, and the data defining the constructed
PH quintic is returned in the struct curve.

void construct PHquintic( complex double p0 ,

complex double p1 ,

complex double p4 ,

complex double p5 ,

struct PHquintic *curve )

2Note that reduction to canonical form amounts to a scaling/rotation transformation,
which does not alter the value of Rabs.

3These roots identify the inflections of the PH quintic Hermite interpolant on t ∈ (0, 1).

12



Figure 2: Some examples of PH quintic interpolants to first–order Hermite
data — the user specifies the initial and final pairs of control points (circles),
and the algorithm determines the interior pair of control points (solid dots).

Various generalizations of the first–order Hermite interpolation problem
are possible, based on the additional degrees of freedom obtained by relaxing
from parametric to geometric continuity (i.e., unit end tangents, rather than
derivative vectors, are imposed). For example, this makes possible the design
of spiral segments, with monotone curvature variation [11, 34, 48, 49].

7 C2 PH quintic spline curves

In the construction of “ordinary” C2 cubic splines interpolating given points
q0, . . . ,qN , each segment ri(t), t ∈ [ 0, 1 ] for i = 1, . . . , N is expressed in the
cubic Hermite basis with end points ri(0) = qi−1, ri(1) = qi and (unknown)
end derivatives r′i(0) = di−1, r′i(1) = di. The second derivative continuity
condition r′′i (1) = r′′i+1(0) for i = 1, . . . , N − 1 at the interior nodes, together
with the prescribed end conditions, then defines a tridiagonal linear system
of equations for the indeterminate nodal derivatives d0, . . . ,dN .

To construct a C2 PH quintic spline interpolating the given points under
specified end conditions, the derivative r′i(t) of each segment is expressed in
terms of complex unknowns zi−1, zi, zi+1 as the square of a complex quadratic
polynomial, such that first and second derivative continuity, r′i(1) = r′i+1(0)
and r′′i (1) = r′′i+1(0) for i = 1, . . . , N −1, is automatically achieved. Choosing
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integration constants ri(0) = qi−1, the displacement conditions
∫ 1

0

r′i(t) dt = ∆qi := qi − qi−1 (13)

for i = 1, . . . , N then define a system of N quadratic equations in the complex
unknowns z1, . . . zN , with only three consecutive variables in each equation
(to eliminate the undefined variables z0 and zN , the first and last equations
must be modified in accordance with the chosen end conditions).

The non–linear nature of the equations that define C2 PH quintic splines
implies a multiplicity of formal solutions. The number of distinct4 solutions is
2N−1 for cubic end spans; 2N periodic end conditions; and 2N+1 for prescribed
end derivatives. An initial study [1] focused on investigating the entire family
of formal solutions, computed using the homotopy method [2, 40]. A unique
“good” solution is observed among them, while the others exhibit extreme
curvature variations or undesired “looping” behavior. In practice, an efficient
method to compute only the good solution is desired. This can be achieved
using iterative methods [20], but a starting approximation close to the good
solution is essential for rapid and reliable convergence to it.

7.1 C2 PH quintic spline equations

Writing the derivative of the PH quintic segment ri(t), t ∈ [ 0, 1 ] of the spline
curve, between qi−1 and qi, in the complex form

r′i(t) := [ 1
2
(zi−1 + zi)(1 − t)2 + zi 2(1 − t)t + 1

2
(zi + zi+1)t

2 ]2 (14)

ensures that successive spans i and i + 1 satisfy the continuity conditions

r′i(1) = r′i+1(0) and r′′i (1) = r′′i+1(0) .

With ri(0) = qi−1, substituting (14) into (13) and evaluating the integral
yields the equation

fi(z1, . . . , zN) := 3 z2
i−1 + 27 z2

i + 3 z2
i+1 + zi−1zi+1

+ 13 zi−1zi + 13 zizi+1 − 60 ∆qi = 0 . (15)

Such an equation arises from each span i = 1, . . . , N of the spline curve, but
the first and last equations, f1(z1, . . . , zN) = 0 and fN(z1, . . . , zN) = 0, must
be modified to reflect the chosen end conditions.

4If z1, . . . , zN is a solution, so is −z1, . . . ,−zN , that defines the same curve. To avoid
replication we require Re(zm) > 0, where m is the smallest index such that Re(zm) 6= 0.
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7.2 End conditions

End conditions are imposed to eliminate z0 and zN+1 from instances i = 1
and i = N of (14). Cubic end spans and periodic end conditions, appropriate
to open and closed C2 spline curves, are discussed here. An alternative is the
imposition of specified initial and final derivatives, r′1(0) = di and r′N(1) = df

— see [20]. But this approach is generally not recommended unless there is
a priori knowledge of suitable choices for di and df .

With cubic end spans, the first and last spline segments r1(t) and rN(t)
are actually PH cubics rather than quintics. The conditions z0−2 z1+z2 = 0
and zN−1 − 2 zN + zN+1 = 0, characterizing this circumstance, are employed
to eliminate z0 and zN+1. The first and last equations then assume the form

f1(z1, . . . , zN) := 13 z2
1 + z2

2 − 2 z1z2 − 12 ∆q1 = 0 ,

fN (z1, . . . , zN) := 13 z2
N + z2

N−1 − 2 zNzN−1 − 12 ∆qN = 0 . (16)

For a C2 closed curve with rN(1) = r1(0) — i.e., qN = q0 — periodic
end conditions imply that r′N(1) = r′1(0) and r′′N(1) = r′′1(0). To achieve this,
z1, . . . , zN is viewed as a cyclical list, and on setting z0 = zN and zN+1 = z1,
the first and last equations become

f1(z1, . . . , zN) := 3 z2
N + 27 z2

1 + 3 z2
2 + η zNz2

+ 13 η zNz1 + 13 z1z2 − 60 ∆q1 = 0 ,

fN (z1, . . . , zN) := 3 z2
N−1 + 27 z2

N + 3 z2
1 + η zN−1z1

+ 13 zN−1zN + 13 η zNz1 − 60 ∆qN = 0 , (17)

where η = ±1 (to be determined in computing the starting approximation:
see §7.4 below). In this case, the linear system is not strictly tridiagonal.

7.3 Iterative solution

The Jacobian matrix M for the system (15) is defined by the elements

Mij :=
∂ fi

∂ zj

, 1 ≤ i, j ≤ N . (18)

For rows i = 2, . . . , N − 1, the only non–zero elements are

Mi,i−1 = 6 zi−1 + 13 zi + zi+1 ,

Mii = 13 zi−1 + 54 zi + 13 zi+1 ,

Mi,i+1 = zi−1 + 13 zi + 6 zi+1 .
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For cubic end spans, the non–zero elements on rows i = 1 and i = N are

M11 = 26 z1 − 2 z2 , M12 = 2 z2 − 2 z1 ,

MN,N−1 = 2 zN−1 − 2 zN , MNN = 26 zN − 2 zn−1 ,

and for periodic end conditions, they are

M11 = 13 η zN + 54 z1 + 13 z2 ,

M12 = η zN + 13 z1 + 6 z2 ,

M1N = 6 zN + 13 η z1 + η z2 ,

MN1 = η zN−1 + 13 η zN + 6 z1 ,

MN,N−1 = 6 zN−1 + 13 zN + η z1 ,

MNN = 13 zN−1 + 54 zN + 13 η z1 .

Writing z = (z1, . . . , zN)T and f = (f1, . . . , fN)T , the Newton–Raphson
iteration for the solution of the system (15) may be expressed as

z(r+1) := z(r) + δz(r) , r = 0, 1, 2, . . . (19)

where the increment vector δz(r) = (δz
(r)
1 , . . . , δz

(r)
N )T is obtained by solving

the linear system
M(r) δz(r) = − f (r) . (20)

The superscripts on M(r) and f (r) indicate evaluation at z(r) = (z
(r)
0 , . . . , z

(r)
N ).

A suitable starting approximation z(0) = (z
(0)
1 , . . . , z

(0)
N ) is required, and the

iteration is truncated when the relative error measure

er+1 :=
‖z(r+1) − z(r)‖2

‖z(r)‖2

(21)

falls below a prescribed tolerance ǫ.
With cubic end spans, the Jacobian M for the system (15) is tridiagonal,

and the increment δz(r) in each Newton–Raphson step can be computed with
O(N) cost. For periodic end conditions, M is tridiagonal except for the non–
zero elements M1N and MN1, but δz(r) can still be computed with O(N) cost
by simple modification5 of the usual tridiagonal algorithm. Coupled with the

5A description of the standard tridiagonal solver, and its modification to accommodate
periodic splines, may be found in Chapter 14 of [13].
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quadratic convergence of the Newton iterations, this furnishes a very efficient
approach to solving the system (15), provided a starting approximation z(0) =

(z
(0)
1 , . . . , z

(0)
N ) sufficiently close to the “good” solution is known.

Once the values z1, . . . , zN are determined, the Bézier control points (4)
for each segment ri(t) can be obtained by taking p0 = qi−1 and setting

w0 = 1
2
(zi−1 + zi) , w1 = zi , w2 = 1

2
(zi + zi+1) ,

with appropriate modifications for the initial and final spans r1(t) and rN(t).

7.4 Starting approximation

The choice of the starting approximation z(0) = (z
(0)
1 , . . . , z

(0)
N ) is critical in

ensuring that the iterations (19) converge rapidly to the “good” solution of
the system (15). The approach adopted here is based on equating mid–point
derivatives of the PH quintic spline to those of the “ordinary” cubic spline
interpolating the prescribed points with analogous end conditions. The latter
derivatives satisfy the linear system

di−1 + 4di + di+1 = 3 (qi+1 − qi−1) i = 2, . . . , N − 1 , (22)

augmented by appropriate end conditions. Having solved for d0, . . . ,dN , the
mid–point derivative matching condition yields the system of equations

zi−1 + 6zi + zi+1 = 4
√

Qi , i = 2, . . . , N − 1 , (23)

where we introduce the quantities

Qi := 6∆qi − (di−1 + di) , i = 1, . . . , N . (24)

For cubic end spans, this is augmented by

z1 = 1
2

√

Q1 , zN = 1
2

√

QN , (25)

and in the case of periodic end conditions we use

η zN + 6z1 + z2 = 4
√

Q1 , zN−1 + 6zN + η z1 = 4
√

QN . (26)

The complex quantities (24) each have two square roots. Either root is chosen
for

√
Q1, and each subsequent root is chosen by requiring

√
Qi−1 and

√
Qi,
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regarded as vectors in R
2, to possess a positive dot product for i = 2, . . . , N .

Finally, η is determined by the sign of the dot product of
√

QN and
√

Q1.
Numerical experiments show that using the solution to equations (23) and

(25) or (26) as the starting approximation (z
(0)
1 , . . . , z

(0)
N ) typically yields rapid

and reliable convergence (within 4–5 Newton–Raphson iterations) to machine
precision on the good interpolant, for “reasonable” point data q0, . . . ,qN . A
discussion of the Kantorovich conditions, that guarantee convergence of the
iteration (19) from any starting point inside a domain that contains a unique
solution of the system (15), may be found in [20].

Figure 3: Left: an open C2 PH quintic spline interpolating seven points with
cubic end spans. Right: a closed C2 PH quintic spline interpolating ten points
under periodic end conditions (the first and last points being coincident).

Figure 3 shows examples of open and closed PH quintic splines, computed
as described above with the convergence tolerance set at ǫ = 10−12. The rapid
convergence of the Newton–Raphson iteration to machine precision is evident
in the behavior of the error measure (21) in these two cases:

e1 = 0.065195832156581 e1 = 0.064269028908590
e2 = 0.002028778363706 e2 = 0.001756440418895
e3 = 0.000002832072272 e3 = 0.000001570833518
e4 = 0.000000000011494 e4 = 0.000000000001339
e5 = 0.000000000000000 e5 = 0.000000000000000 .
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7.5 Implementation

The format of the functions used to construct open and closed C2 PH quintic
splines is as follows. The integer n defines the number of points (namely, n+1)
to be interpolated, passed to the function through the array of complex values
q[] — the points are labelled q[0],. . .,q[n]. The n PH quintic segments
defining the constructed spline curve are returned through the struct array
spline[] — these segments are labelled spline[1],. . .,spline[n].

void open PHquintic spline( int n ,

complex double q[] ,

struct PHquintic spline[] )

void closed PHquintic spline( int n ,

complex double q[] ,

struct PHquintic spline[] )

These call the functions tridiag open() and tridiag closed() to solve
the tridiagonal system arising in each Newton–Raphson iteration. The inputs
to these functions are the dimension n of the system, arrays a[], b[], c[]
defining the lower, main, and upper diagonal matrix elements, and the array
d[] of right–hand side values. The solutions are returned in the array x[].

The function beval() is a further basic utility, that receives as input the
degree n and array of Bernstein coefficients b[] of a polynomial, together with
an independent variable value t, and returns the polynomial value computed
by the de Castlejau algorithm. The maximum allowed degree n is 100.

7.6 Extensions and generalizations

A number of useful extensions can be implemented by simple modifications
of the basic C2 PH quintic spline. As described above, the algorithm assumes
a uniform parameterization — i.e., each spline segment is defined on the unit
parameter interval t ∈ [ 0, 1 ]. This is appropriate in cases where q0, . . . ,qN

have approximately uniform spacing, but when they are unevenly spaced it
is well–known [8] that parameter intervals ∆ti proportional to the distances
|qi−qi−1| yield better interpolants. C2 PH quintic splines with non–uniform
parameterization correspond to solutions of a modification of the system (15),
in which the terms of these equations are multiplied by certain real constants:
complete details of the appropriate modification may be found in [20].
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A further extension involves the shape–preserving PH splines [24], which
can be made to preserve certain shape properties (monotonicity, convexity,
etc.) of the point data by the introduction of “tension parameters.” Finally,
we mention a scheme for designing C2 PH spline curves by means of control
polygons [42] — the control polygon is used to determine certain nodal points
that can serve as input to the interpolation algorithm described above. The
resulting PH quintic splines closely resemble the “ordinary” cubic B–spline
curves defined by the prescribed control polygon.

8 Interactive implementation

An interactive implementation of the various planar PH quintic construction
and analysis functions was developed for the Windows environment, based on
the Microsoft Foundation Class (MFC) Library and Open Graphics Library
(OpenGL). For compatibility with these libraries, the implementation is in
C++, and in some cases this required modifications of the interfaces to the C

functions described in Sections 4–7. This interactive implementation allows
the user to input the point data defining a single PH quintic segment or a C2

PH quintic interpolating spline by mouse, and to modify the resulting curve
in real time by using the mouse to move these points. Key properties of the
resulting PH curves (arc length, bending energy, etc.) are reported, and the
offset curves can also be constructed. For cases in which the point data must
be precisely specified, the user can type in the coordinates.

Individual PH quintic curve segments are defined by the PHquintic struct
described in Section 2, and C2 PH quintic splines are specified as arrays of
PHquintic structs. Class PlanarPH defines the basic functions for computing
and analyzing these curves. To ensure a high level of precision, all complex
variables in the class are type double.

PlanarPH(const CPointPH m pt[]);

PlanarPH(const CPointPH m pt[], int index);

The overloading constructors (for a single PH quintic Hermite interpolant and
a PH quintic spline, respectively) convert the point coordinates specified by
the user from type CPointPH to complex double. The CPoint type captured
in the window display is long int, so the point type is redefined as CPointPH,
which gives a representation of plane coordinates in type double.
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The beval() function described in Section 7 is used to plot the PH curves.
This function is reloaded to calculate the values of polynomials with complex

Bernstein coefficients, to obtain the curve points directly. The friend function
is a non–member function, but can access the private and protected members.
Friend utility functions are typically used to allow mutual access to private or
protected members of different classes. It also allows other classes to invoke
functions using a concise syntax — e.g., iter = getIter(pph), rather than
iter = pph.getIter().

friend double beval(int n, const double b[], double t);

friend complex<double> beval(int n, const complex<double> b[],

double t);

The function Spline() computes a C2 PH quintic spline interpolating num+1
points labelled 0, . . . , num under specified end conditions. The coordinates of
these points are stored in the complex array q[]. The data that defines the
num PH quintic segments of the constructed spline curve are returned in the
PHquintic struct array spline[]. The Boolean parameter closed specifies
the type of end conditions (cubic end spans or periodic end conditions, for
open and closed curves, respectively). The two functions tridiag open()

and tridiag closed(), described in Section 7, solve the tridiagonal systems
appropriate to these cases.

void Spline(BOOL closed);

friend void tridiag open(. . .);
friend void tridiag closed(. . .);

The following functions define various interfaces for passing data. External
functions must call getCtrlPt to obtain the complex values that define the
control points. getIter returns the number of Newton–Raphson iterations
employed in the spline construction, stored in the variable iter. Similarly,
the functions getParaSpeed, getArcLength, and getEnergy compute the
parametric speed, arc length, and bending energy.

friend complex<double> getCtrlPt(const PlanarPH &pph, int i, int j);

friend int getIter(const PlanarPH &pph);

friend double getParaSpeed(const PlanarPH &pph, int i, double t);

friend double getArcLength(const PlanarPH &pph, int i, double t);

friend double getEnergy(const PlanarPH &pph, int j);
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In order to plot the constructed PH curves on the screen, OpenGL must first
be initialized in the view class of MFC — this is named PlanarPH mfcView,
inherited from the base class CView.

int index, status, pointing;

CPointPH o ActRF, o ActRFTrans;

CPointPH ptActRF[Max+1];

CPointPH getAbsCoord(CPointPH pt);

CPointPH getActCoord(CPointPH pt);

double Distance(CPointPH p1, CPointPH p2);

The variable index (=num+1) records the number of input points, and status

tracks the program mode (plotting, analyzing, translating, etc). The variable
pointing identifies a point selected by the user after the curve is plotted,
and the selected point is highlighted (pointing = −1 if no point is selected).

The program employs two coordinate systems, absolute and relative, to
solve translation and display problems. For absolute coordinates, the window
display selects the left upper window corner as the origin, with a downward
ordinate direction. However, OpenGL selects the left lower corner as origin,
with an upward ordinate direction. In both cases, the abscissa direction is to
the right. The origin of the relative coordinates, in the absolute coordinate
system, is defined by o ActRF. All calculations are performed in the relative
coordinates, including cursor location and PH curve computations. The array
ptActRF[] stores the relative coordinates of the input points. By calling the
functions getabsCoord() and getActCoord, the coordinates of any point
can be transformed between the relative and absolute systems. The function
Distance() returns the distance between two points.

PlanarPH pph;

void InitPH();

void DrawLine(int nIndex, int flag);

Before rendering, the function InitPH() should be called in most cases
to initialize pph, which is an object of class PlanarPH. The plotting function
DrawLine is called to plot a single point, or the whole curve, in accordance
with the parameter flag. nIndex indicates the number of points that should
be plotted when flag equals plotPoint. Otherwise, nIndex is the number
of the last point which should be plotted.
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BOOL isMenuPh, isMenuCubic, isMenuPhCtrl, isMenuCubicCtrl;

//Status of Menu

BOOL isLBDown;

CPointPH LBDownPt;

GLfloat margin;

The program also offers the ability to compare the C2 PH quintic spline
and the “ordinary” C2 cubic spline with analogous end conditions, and the
user may control the display status of each spline. The variables isMenuPh,
isMenuCubic, isMenuPhCtrl, and isMenuCubicCtrl monitor the status of
the menu. They are TRUE if the corresponding menu is checked, and the
program then calls the Drawline function to plot the spline curves and their
control polygons. isLBDown and LBDownPt specify the status of the left mouse
button, and record the coordinates of the point where it is pressed down.

Color List offers an efficient and flexible means to render the scene in the
window. With an array or pointer of different color values, OpenGL functions
such as glColor3fv make the current brush color as needed. Each color in
the Color List should be described in RGB format, with three floats between 0
and 1 defining the red, green, and blue values. In order to display the points
and lines smoothly on the screen, the program uses OpenGL functions to
enable the blending option and smooth option.

As the Graphical User Interface (GUI) for the program, the window has a
title bar, menu bar, plotting area, and a status bar. The status bar shows the
cursor coordinates before plotting, the iteration number, the arc length and
bending energy, and the selected point after plotting. Each menu option has
an accelerator (i.e., an alternative keyboard input: see Table 1). In the Edit
menu, the user can plot a Hermite interpolant or spline curve, edit multiple
points, translate the curve, and construct an offset. The program offers two
approaches to editing points: right–clicking on a single point to change it, or
selecting Edit Multiple Points in the menu to change all the points.

Figures 4–8 present examples of the program in use. Figure 4 illustrates
the construction of a single PH quintic Hermite interpolant from initial and
final pairs of control point specified by the user. Figure 5 shows a planar C2

PH quintic spline interpolating a sequence of points freely selected by the user
with the mouse. For this plot, the View menu options PH and PH(Ctrl) have
been checked, so the control polygons of each PH quintic spline segment are
also shown. Figure 6 presents the same C2 PH quintic spline, but in this case
the View menu options PH and Cubic are checked, to compare the PH spline
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New Spline N
Edit Multiple Points ctrl+E
Translate Spline T
Offset O
Hermite H
PH P
PH(Ctrl) ctrl+P
Cubic C
Parametric Speed shift+A
Arc Length A

Table 1: Accelerator keyboard inputs for menu items.

with the ordinary cubic spline — note the rather poor shape of the latter, as
compared to the former. In Figure 7, the parametric speed variation for the
C2 PH spline shown in Figure 4 is plotted. Finally, Figure 8 illustrates the
construction of offset curves to a C2 PH quintic spline, for several different
(positive and negative) values of the offset distance d — note that the offset
curves can be cleared from the display by setting d = 0.

9 Software packages

Two software packages have been prepared to accompany this paper. The
first package, found in the file PHquintic.c, is written in plain C language
and offers a set of modular functions that execute each of the basic PH curve
construction and analysis computations described in Sections 4–7 (interfaces
to these functions have been described in the corresponding sections of the
paper). This package allows a software developer to “pick and choose” those
functions of primary interest in a specific application context, and incorporate
them in an existing software system with minimum effort. The main program
accompanying these functions provides some sample data and function calls
to test the various functions, but no graphics capability.

The second package, contained in the zip file InteractivePHquintic, is
implemented in C++ for compatibility with the MFC and OpenGL libraries,
and provides interactive graphical construction, manipulation, and analysis
capabilities (these libraries are required to compile and run the package). The
unzipped package can be compiled and run by opening a VC++ project file in
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Figure 4: A single PH quintic segment, constructed as a Hermite interpolant
from user mouse input specified as initial and final pairs of control points.

Figure 5: An example of an open C2 PH quintic spline curve interpolating a
sequence of points (large dots) specified interactively with the mouse. The
control polygons for each of the PH quintic spline segments are also shown.
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Figure 6: Comparison of the C2 PH quintic spline shown in Figure 5 and the
“ordinary” C2 cubic spline interpolating the same points and end conditions.

Figure 7: Parametric speed plot for the C2 PH quintic spline in Figure 5.
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Figure 8: Construction of the rational offsets to a planar C2 PH quintic spline
curve for several — positive and negative — values of the offset distance d.

Microsoft Visual Studio. The basic functions in PHquintic.c are included
in this package, but the interfaces are modified to meet the requirements of
C++ and the MFC and OpenGL libraries. This package offers a more visual
and intuitive user interface, but is perhaps less well–suited to the purpose of
porting individual functions to an existing software system.

10 Closure

The basic functions described herein, and implemented in the accompanying
software packages, offer a suite of key utilities for the construction, analysis,
and application of planar Pythagorean–hodograph quintic curves. Use of the
complex representation for planar PH curves ensures compact, efficient, and
robust algorithm formulations, allowing interactive manipulation capability.
The software functions provide a basis for application–specific customization,
tailored to the needs of particular application contexts. It is hoped that the
availability of this package will further encourage the growing adoption of
PH curves in diverse scientific and engineering computations.
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