
MA 323 Geometric Modelling

Course Notes: Day 20

Curvature and G2 Bezier splines

David L. Finn

Yesterday, we introduced the notion of curvature and how it plays a role formally in the
description of curves, as a geometric second derivative. Today, we want to continue this
discussion and construct curves that have second order continuity. In this manner, we derive
the curvature of a cubic Bezier curve at the endpoints only. It is worth noting that since
cubic curves are smooth curves, the curvature (when defined, as it is possible to construct
a cusp with a cubic curve) is continuously varying. In the construction of a G2 spline, it is
therefore only necessary to match the curvatures are the endpoints.

20.1 G2 Bezier splines

A G2 spline is a piecewise cubic Bezier curve which is G1 and the derivative is G1. They
are much more difficult to describe analytically, through control points and the functional
representation. Basically, we want to reparameterize the curve with respect to the arclength
parameter and show the curve is C2 respect to the arc-length parameter, which means the
curvatures and the unit tangent vectors must be equal at the joint point.
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which yields the G2 condition
r2 = r−r+.
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For a G2 spline, we can place the control points p1
2 and p2

1 anywhere, and then the joint
point p1

3 = p2
0 is determined by the G2 condition.

20.2 Curvature Calculations

We want to discuss the calculations and the derivations involved with the establishing the
conditions for a G2 spline. First, we want to consider the curvature of a cubic Bezier curve
at one of the endpoints. This can be determined geometrically from the control points.

Recall from calculus, the curvature of a curvature is given by the normal component of
acceleration as

κ =
a ·N
‖v‖2

where a is the acceleration d2c/dt2, N is the unit normal vector, and v is the velocity vector.
Our definition of curvature of a plane curve agrees with this definition except that we have
a different definition of a normal vector vector of a plane curve.
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Figure 1: Curvature calculation for a cubic Bezier curve at p0

For a cubic Bezier curve with control points p0, p1, p2, p3, the acceleration vector at p0 is
6∆2

0p and the velocity vector is 3∆1
0p, where ∆2

0p = (p2−p1)− (p1−p0) and ∆1
0p = p1−p0.
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We can not write the unit normal vector N at p0 in terms of the control points, but that is
unneeded. It is important that the dotproduct of ∆2

0p with N is equal to the dotproduct of
p2 − p1 with N , because p1 − p0 is parallel to T and therefore orthogonal to N . Thus, the
area of the triangle with vertices p0, p1, p2 is equal to

area(p0p1p2) = 1
2 |(p2 − p1) ·N | ‖p1 − p0‖

as (p2 − p1) ·N is the height of the triangle p0p1p2. We thus have that

a ·N = 6∆2
0p ·N = 6(p2 − p1) ·N =

12area(p0p1p2)
‖p1 − p0‖

and the curvature at p0 is then

κ =
12area(p0p1p2)

9‖p1 − p0‖3 =
4
3

area(p0p1p2)
‖p1 − p0‖3

since v = 3(p1 − p0). Likewise the curvature at p3 is given by

κ =
4
3

area(p1p2p3)
‖p3 − p2‖3

which yields the two curvature formula that gave above. We note that these formula can
only be used at the endpoints, since they were derived purely from the special form of the
velocity and acceleration vectors at the endpoints.

20.3 Control Points for G2 Splines

In creating a G2 spline using two segments, we give five control points d−2, d−1, d0, d1 and
d2, and define a C0 cubic Bezier spline, similar to the construction of a C2 Bezier spline.
The control points b0, b1, b2, b3 (the joint point), b4, b5 and b6 of the C0 Bezier spline are
given by

b0 = d−2, b1 = d−1, b5 = d1, b6 = d2

and then
b2 = (1− t−) d−1 + t− d0 b4 = (1− t+) d0 + t+ d1

where r− = t−/(1 − t−) is a control specifying the location of b2 on the line d−1d0 and
r+ = t+/(1− t+) is a control specifying the location of b4 on the line d0d1. The quantities
r− and r+ are the ratios of ratio(d−1, b2, d0) and ratio(d0, b4, d1); the ratio of three collinear
points with the middle point B between the endpoints A and C is defined by ratio(A,B, C) =
|CB|/|AB|. The joint point b3 is then given by

b3 = (1− t) b2 + t b4

where r = t/(1− t) must satisfy r2 = r−r+.

To show that r2 = r−r+, we begin by noting that for d−2, d−1, d0, d1, d2 to define a G2

spline we must have
area(p1p2p3)
‖p3 − p2‖3 =

area(p3p4p5)
‖p4 − p3‖3 ,

or

(∗) area(p1p2p3)
area(p3p4p5)

=
‖p3 − p2‖3
‖p4 − p3‖3 .
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Figure 2: Determining the control points by ratios

The ratio of the areas in (∗) (the left-hand side of the equation) is given by

|(p2 − p1) ·N | ‖p3 − p2‖
|(p5 − p4) ·N | ‖p4 − p3‖

but ‖p3 − p2‖ = t‖p4 − p2‖ and ‖p4 − p3‖ = (1 − t) ‖p4 − p2‖. Thus the ratio of areas is
equal to

r
|(p2 − p1) ·N |
|(p5 − p4) ·N | = r

t−
1− t+

|(d0 − d−1) ·N |
|(d0 − d1) ·N |

since p2−p1 = p2−d−1 = t− (d0−d−1) and p5−p4 = (1− t+) (d1−d0) To simplify further,
we look at the triangle p2d0p4, and note that (d0 − p2) ·N = (d0 − p4) ·N (height is equal).
Therefore, since (d0 − p2) = (1− t−)(d0 − d−1) and d0 − p4 = t+(d0 − d1), we get

(d0 − p2) ·N
(d0 − p4) ·N =

(1− t−)
t+

(d0 − d−1) ·N
(d0 − d1) ·N ,

and thus
(d0 − d−1) ·N
(d0 − d1) ·N =

t+
1− t−

.

Therefore, the ratio of areas in (∗) is

r
t−

1− t+

t+
1− t−

= rr−r+

and the right-hand side of (∗) simplifies to r3 which yields r2 = r−r+.
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Figure 3: Determining the control points for G2 Bezier spline

Exercises

1. For the cubic Bezier curve with control points p0 = [0, 0], p1 = [1, 1], p2 = [2, 1],
p3 = [3, 1], compute the curvature at p0 and p3

(a) Using calculus κ = (a ·N)/|v|2 where v is the first derivative and a is the second
derivative of the curve.

(b) Using the formula κ = 4
3 area(p1p2p3)/‖p3 − p2‖3

2. Complete the interactive exercises associated with the applet G2 Bezier splines.

3. For a C0 Bezier spline of two segments with a non-uniform knot sequence determine
the conditions for the curve to be joined in a C2 manner, and then determine the
location of the C2 Bezier spline control points d−2, d−1, d0, d1 and d2. Do you believe
that this is the same construction as a G2 Bezier spline of two cubic curves.


