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SUMMARY

This paper considers the development of spatially adaptivesmoothing splines for the esti- 15

mation of a regression function with non-homogeneous smoothness across the domain. Two
challenging issues that arise in this context are the evaluation of the equivalent kernel and the
determination of a local penalty. The roughness penalty is afunction of the design points in order
to accommodate local behavior of the regression function. It is shown that the spatially adaptive
smoothing spline estimator is approximately a kernel estimator. The resulting equivalent kernel 20

is spatially dependent. The equivalent kernels for traditional smoothing splines are a special case
of this general solution. With the aid of the Green’s function for a two-point boundary value
problem, the explicit forms of the asymptotic mean and variance are obtained for any interior
point. Thus, the optimal roughness penalty function is obtained by approximately minimizing
the asymptotic integrated mean square error. Simulation results and an application illustrate the25

performance of the proposed estimator.

Some key words: Equivalent kernel; Green’s function; Nonparametric regression; Smoothing splines; Spatially adap-
tive smoothing.

1. INTRODUCTION

Smoothing splines play a central role in nonparametric curve-fitting. Recent synopses include
Wahba (1990), Eubank (1999), Gu (2002), and Eggermont & LaRiccia (2009). Specifically, con-
sider the problem of estimating the mean function from a regression model

yi = f0(ti) + σ(ti)ǫi (i = 1, . . . , n),

where theti are the design points on[0, 1], the ǫi are independent and identically-distributed30

random variables with zero mean and unit variance,σ2(·) is the variance function, andf0 is
the underlying true regression function. The traditional smoothing spline is formulated as the

http://arxiv.org/abs/1306.1868v1


2 X. WANG, P. DU AND J. SHEN

solutionf to the minimization of

1

n

n
∑

i=1

σ−2(ti){yi − f(ti)}
2 + λ

∫ 1

0
{f (m)(t)}2dx, (1)

whereλ > 0 is the penalty parameter controlling the trade-off betweenthe goodness-of-fit and
smoothness of the fitted function. Smoothing splines have a solid theoretical foundation and35

are among the most widely used methods for nonparametric regression (Speckman, 1981; Cox,
1983).

The traditional smoothing spline model has a major deficiency: it uses a global smooth-
ing parameterλ, so the degree of smoothness off0 remains about the same across the design
points. This makes it difficult to efficiently estimate functions with non-homogeneous smooth-40

ness. Wahba (1995) suggested using a more general penalty term, which replaces the constant
λ by a roughness penalty functionλ(·). Sinceλ(·) is then a function oft, the model becomes
adaptive in the sense that it accommodates the local behavior of f0 and imposes a heavier penalty
in the regions of lower curvature off0. Pintore et al. (2006) used a piecewise constant approx-
imation forλ(·) but this requires specification of the number of knots, the knot locations, and45

the values ofλ(·) between these locations. Storlie et al. (2010) discussed some computational
issues on spatially adaptive smoothing splines. Liu & Guo (2010) refined the piecewise constant
idea and designed a data-driven algorithm to determine the optimal jump locations and sizes
for λ(·). Besides adaptive smoothing splines, other adaptive methods have been developed, in-
cluding variable-bandwidth kernel smoothing (Müller & Stadtm̈uller, 1987), adaptive wavelet50

shrinkage (Donoho & Johnstone, 1994, 1995, 1998), local polynomials with variable bandwidth
(Fan & Gijbels, 1996), local penalized splines (Ruppert & Carroll, 2000), regression splines
(Friedman & Silverman, 1989; Stone et al., 1997; Luo & Wahba,1997; Hansen & Kooperberg,
2002), and free-knot splines (Mao & Zhao, 2003). Further, Bayesian adaptive regression has
also been reported by Smith & Kohn (1996), DiMatteo et al. (2001), and Wood et al. (2002).55

Nevertheless, adaptive smoothing splines have the advantages of computational efficiency and
easy extension to multidimensional covariates using the smoothing spline analysis of variance
technique (Wahba, 1990; Gu, 2002). Further, the results in the present paper can be extended to
the more general L-spline smoothing (Kimeldorf & Wahba, 1971; Kohn & Ansley, 1983; Wahba,
1985). Also, the usual Reinsch scheme can be easily modified to the present case.60

Let Wm
2 = {f : f (m−1) absolutely continuous andf (m) ∈ L2[0, 1]}, where L2[0, 1] is the

space of Lebesgue square integrable functions, endowed with its usual norm‖ · ‖2 and inner
product(·, ·)2. The method of adaptive smoothing splines findsf ∈Wm

2 to minimize the func-
tional

ψ(f) =
1

n

n
∑

i=1

σ−2(ti){yi − f(ti)}
2 + λ

∫ 1

0
ρ(t){f (m)(t)}2dt, (2)

whereλ > 0 is the penalty parameter, andρ : [0, 1] → (0,∞) denotes the adaptive penalty func-65

tion; more properties ofρwill be stated later. Here, we incorporate a functionρ(t) into the rough-
ness penalty, which generalizes the traditional smoothingsplines, whereρ(t) ≡ 1. A two-point
boundary value problem technique has been developed to find the asymptotic mean squared error
of the adaptive smoothing spline estimator with the aid of the Green’s function. Thus the opti-
mal roughness penalty function is obtained explicitly by approximately minimizing the asymp-70

totic integrated mean squared error. Asymptotic analysis of traditional smoothing splines us-
ing Green’s functions was performed by Rice & Rosenblatt (1983), Silverman (1984), Messer
(1991), Nychka (1995), and Eggermont & LaRiccia (2009); an extension to certain adaptive
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splines was made in Abramovich & Grinshtein (1999). In contrast to these results, the current pa-
per develops a general framework for asymptotic analysis ofadaptive smoothing splines, yielding 75

a systematic, yet relatively simpler, approach to obtaining closed-form expressions of equivalent
kernels for interior points and to asymptotic analysis. Ourestimate possesses the interpretation
of spatial adaptivity (Donoho & Johnstone, 1998), and the equivalent kernel may vary in shape
and bandwidth from point to point, depending on the data.

2. CHARACTERIZATIONS OF THE ESTIMATOR 80

In this section, we derive the optimality conditions for thesolution that minimizes the func-
tional (2). Letωn(t) = n−1

∑n
i=1 I(ti ≤ t) whereI is the indicator function, and letω be a

distribution function with a continuous and strictly positive density functionq on [0, 1]. For a
function g, define‖g‖ = supt∈[0,1] |g(t)| and subsequent norms likewise. LetDn = ‖ωn − ω‖.
If the design pointsti are equally spaced,Dn = O(n−1) with q(t) = 1 for t ∈ [0, 1]. If ti are in- 85

dependent and identically distributed regressors from a distribution with bounded positive den-
sity q, thenDn = O{n−1/2(log log n)1/2} by the law of the iterated logarithm for empirical
distribution functions.

Let h be a piecewise constant function such thath(ti) = yi (i = 1, . . . , n). For anyt ∈ [0, 1]
andf ∈ L1[0, 1], define

l1(f, t) =

∫ t

0
σ−2(s)f(s)dω(s), lk(f, t) =

∫ t

0
lk−1(f, s)ds,

and

ľ1(f, t) =

∫ t

0
σ−2(s)f(s)dωn(s), ľk(f, t) =

∫ t

0
ľk−1(f, s)ds (2 ≤ k ≤ m).

THEOREM 1. Necessary and sufficient conditions forf̂ ∈Wm
2 to minimizeψ in (2) are that

(−1)m λ ρ(t) f̂ (m)(t) + ľm(f̂ , t) = ľm(h, t), t ∈ [0, 1], (3)

almost everywhere, and 90

ľk(f̂ , 1) = ľk(h, 1) (k = 1, . . . ,m). (4)

Both ľ1(f̂ , t) andľ1(h, t) are piecewise constant int. Thereforělm(h, t) − ľm(f̂ , t) is a piece-
wise (m− 1)th order polynomial. Thus, Theorem 1 shows thatρ(t) f̂ (m)(t) is a piecewise
(m− 1)th order polynomial. The exact form of̂f will depend on additional assumptions about
ρ(t). For example, Pintore et al. (2006) assumedρ(t) to be piecewise-constant with possible
jumps at a subset of the design points. Then, the optimal solution is a polynomial spline of order 95

2m. It is well-known that the traditional smoothing spline is anatural spline of order2m, which
corresponds to the case here whenρ(t) ≡ 1.

3. ASYMPTOTIC PROPERTIES OF THE ESTIMATOR

We establish an equivalent kernel and asymptotic distribution of the spatially adaptive smooth-
ing splines at interior points using a two-point boundary value problem technique. The key idea is100

to represent the solution to (3) by a Green’s function. It will be shown that the adaptive smoothing
spline estimator can be approximated by a kernel estimator,using this Green’s function.
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DenoteRk(t) = lk(f̂ , t)− ľk(f̂ , t) (k = 1, . . . ,m). Specifically, whenk = m, it follows from
Theorem 1 that

Rm(t) = (−1)mλ ρ(t)f̂ (m)(t) + lm(f̂ , t)− lm(h, t).

Write r(t) = σ2(t)/q(t). Thus,lm(f̂ , t) solves the two-point boundary value problem

(−1)mλ ρ(t)
dm

dtm

{

r(t)
dm

dtm
lm(f̂ , t)

}

+ lm(f̂ , t) = ľm(h, t) +Rm(t), (5)

subject to the2m boundary conditions from (4):

lk(f̂ , 0) = 0, lk(f̂ , 1) = lk(h, 1) +Rk(1)(k = 1, . . . ,m). (6)

The solution to (5) can be obtained explicitly with the aid ofthe Green’s function. For readers105

unfamiliar with Green’s functions, operationally speaking, if P (t, s) is the Green’s function for

(−1)mλρ(t){r(t)u(m)(t)}(m) + u(t) = 0, (7)

then
∫ 1
0 P (t, s){ľm(h, s) +Rm(s)}dswill solve (5). This, together with the boundary conditions

(6), yields the solution to the two-point boundary value problem in (5) and (6). The derivations of
the Green’s function and discussions of the boundary conditions are given in the online Supple-
mentary Material. Specifically, let{Ck(t), k = 1, . . . , 2m} be2m linearly independent solutions
for the homogeneous differential equation

(−1)mλ ρ(t)
dm

dtm

{

r(t)
dm

dtm
lm(f̂ , t)

}

+ lm(f̂ , t) = 0.

Then,lm(f̂ , t) in (5) can be represented as

lm(f̂ , t) =

∫ 1

0
P (t, s)ľm(h, s)ds +

∫ 1

0
P (t, s)Rm(s)ds+

2m
∑

k=1

akCk(t), (8)

where the last term is due to the boundary conditions and the coefficientsak(k = 1, . . . , 2m)
are shown to be unique and stochastically bounded for all sufficiently small λ in the Sup-
plementary Material. Equation (8) can be decomposed into three parts: the asymptotic mean110
∫ 1
0 P (t, s)lm(f0, s)ds; the random component

∫ 1
0 P (t, s)ľm(h− f0, s)ds; and the remain-

der termΓ(t) =
∑2m

k=1 akCk(t) +
∫ 1
0 P (t, s)R̃m(s)ds, whereR̃m(t) = lm(f̂ − f0, t)− ľm(f̂ −

f0, t). It will be shown that‖R̃m‖ has a smaller order and the remainder term is negligible in the
asymptotic analysis. Taking them-th derivative point-wise on both sides of (8) gives the crucial
representation of the adaptive smoothing spline estimator. This gives115

r−1(t)f̂(t) =
dm

dtm

∫ 1

0
P (t, s)lm(f0, s)ds +

dm

dtm

∫ 1

0
P (t, s)ľm(h− f0, s)ds+ Γ(m)(t). (9)

We now introduce the main assumptions of this paper:

Assumption1. The functionsρ(·), q(·), andσ(·) are (m+ 1)-times continuously differen-
tiable and strictly positive.

Assumption2. The functionf0 is 2m-times continuously differentiable.

Assumption3. The smoothing parameterλ→ 0 asn→ ∞. Denote

∆n = Dnn
−1/2λ−(1+m)/(2m)max

[

{log(1/λ)}1/2, (log log n)1/2
]

.
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Assume∆n → 0 asn→ ∞. 120

Assumption4. The random errorsǫi have a finite fourth moment.

Assumption 3 ensures that the smoothing parameterλ tends to zero not too quickly. In par-
ticular, it encompasses the cases of equally spaced design variables and of independent and
identically-distributed regressors from a distribution with bounded positive density. In the for-
mer case,Dn = O(n−1) and in the second case,Dn = O(n−1/2(log log n)1/2). The optimal 125

choice ofλ discussed subsequently is of ordern−2m/(4m+1) and it is easy to check that it satis-
fies Assumption 3.

THEOREM 2. Assume that Assumptions1–4 hold. Letβ = λ−1/(2m). For any givent ∈ (0, 1),
the adaptive smoothing spline estimatorf̂ can be written as

f̂(t) = f0(t) + λ (−1)m−1r(t)
{

ρ(t)f
(m)
0 (t)

}(m)
+ o(λ) +

1

n

n
∑

i=1

σ(ti)

q(ti)
J(t, ti)ǫi (10)

+O(βm)∆n +O(βm)e−βO(1)

uniformly inλ, whereJ(t, s) is given in (11). 130

Remark1. Eggermont & LaRiccia (2006) were the first to show in full generality that the stan-
dard spline smoothing corresponds approximately to smoothing by a kernel method. A simple
explicit formula of the equivalent kernel for allm, denoted byK(t, s), is given by Berlinet &
Thomas-Agnan (2004). For interior points, the kernelK is of the formK(t, s) = βL(β|t− s|)
for some functionL, andL(| · |) is a2m-th order kernel on(−∞,∞). In particular, the shape of 135

K(t, ·) is defined byL(·) and is the same for differentt. For example, the closed form expres-
sions for the first two equivalent kernels are:

m = 1 : L(|t|) =
1

2
e−|t|,

m = 2 : L(|t|) =
1

23/2
e−|t|/21/2

{

cos
( |t|

21/2

)

+ sin
( |t|

21/2

)}

,

m = 3 : L(|t|) =
1

6
e−|t| + e−

1

2
|t|
{ 1

6
cos

(31/2|t|

2

)

+
31/2

6
sin

(31/2|t|

2

)}

,

m = 4 : L(|t|) = e−0·9239|t|
{

0·2310 cos(0·3827|t|) + 0·0957 sin(0·3827|t|)
}

+ e−0·3827|t|
{

0·0957 cos(0·9239|t|) + 0·2310 sin(0·9239|t|)
}

.

Theorem 2 indicates that the spatially adaptive smoothing spline estimator is also approximately
a kernel regression estimator. The equivalent kernelJ(t, s) is the corresponding Green’s func-
tion. As shown in the Supplementary Material, 140

J(t, s) = β̺(s)Q′
β(s)L{β|Qβ(t)−Qβ(s)|}, (11)

where

Qβ(t) =

∫ t

0

{

r(s)ρ(s)
}−1/(2m){

1 +O(β−1)
}

ds

is an increasing function oft, and‖̺‖ = 1 +O(β−1). This shows that the shape ofJ(t, ·) varies
with t. Our estimator possesses the interpretation of spatial adaptivity (Donoho & Johnstone,
1998); it is asymptotically equivalent to a kernel estimator with a kernel that varies in shape and
bandwidth from point to point.
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Remark2. The numberβ−1 in (11) plays a role similar to the bandwidthh in kernel smooth-145

ing. Theorem 2 shows that the asymptotic mean has bias(−1)m−1λr(t)
{

ρ(t)f
(m)
0 (t)

}(m)
, which

can be negligible ifλ is reasonably small. On the other hand,λ cannot be arbitrarily small since
that will inflate the random component. The admissible rangefor λ is a compromise between
these two.

COROLLARY 1. Givenρ(·) and r(·), and assuming Assumptions1–4, if λ = n−2m/(4m+1),150

then, for anyt ∈ (0, 1), n2m/(4m+1)
{

f̂(t)− f0(t)
}

converges to

N
[

(−1)m−1r(t)
{

ρ(t)f
(m)
0 (t)

}(m)
, L0 r(t)

1−1/(2m)ρ(t)−1/(2m)
]

, (12)

in distribution, whereL0 =
∫∞
−∞L2(|t|)dt.

The proof of Corollary 1 is given in the Supplementary Material. The asymptotic mean squared
error of the spatially adaptive smoothing spline estimatoris of ordern−4m/(4m+1), which is the
optimal rate of convergence given in Stone (1982).155

4. OPTIMAL SELECTION OFρ

The optimalλ andρ are chosen to minimize the integrated asymptotic mean squared error
∫ 1

0

{

λ2r2(t)
[

{ρ(t)f
(m)
0 (t)}(m)

]2
+

L0

nλ1/(2m)
r(t)1−1/(2m) ρ(t)−1/(2m)

}

dt, (13)

which is in fact a function ofλρ(t). We choose the optimalλ to beλo = n−2m/(4m+1). The
optimal roughness penalty functionρ(t) minimizes the functional

Π(ρ) =

∫ 1

0

{

r2(t)
[

{ρ(t)f
(m)
0 (t)}(m)

]2
+ L0r(t)

1−1/(2m) ρ(t)−1/(2m)
}

dt. (14)

Without any further assumptions, the above minimization problem does not have an optimal160

solution, since any arbitrarily large and positive function ρ with
{

ρ(t)f
(m)
0 (t)

}(m)
= 0 on any

sub-interval of[0, 1] will makeΠ(·) arbitrarily small. To deal with this problem, we first impose
a technical assumption onf0.

Assumption5. The setN =
{

t ∈ [0, 1] : f
(m)
0 (t) = 0

}

has zero measure.

Let u(t) = {ρ(t)f
(m)
0 (t)}(m), z(t) = ρ(t)f

(m)
0 (t), andD−m be them-fold integral operator.165

Thenz(m)(t) = u(t) and

z(t) = (D−mu)(t) + θT(t)x0, (15)

for θ(t) =
(

1, t, t2/2!, . . . , tm−1/(m− 1)!
)

T

and somex0 ∈ R
m. Moreover, we can define

z(t)/f
(m)
0 (t) to be any positive constant for allt ∈ N wheref (m)

0 (t) = 0. This definition is
assumed in the subsequent development. Hence, the functional Π(ρ) in (14) becomes

J(u, x0) =

∫ 1

0
r2(t)u2(t)dt+

∫ 1

0
L0r(t)

1−1/(2m)

{

z(t)

f
(m)
0 (t)

}−1/(2m)

dt,

wherez(t) is defined by(u, x0). We then introduce another technical assumption onz(t), or170

essentially onρ.
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Assumption6. There exist positive constantsµ andε such that‖x0‖ ≤ µ andz(t)/f (m)
0 (t) ≥

ε for all t. And
{

z(t)/f
(m)
0 (t)

}−1/(2m)
is Lebesgue integrable on[0, 1].

Consider the following set inL2[0, 1] × R
m,

175

P =
{

(u, x0) ∈ L2[0, 1] × R
m : ‖x0‖ ≤ µ, z(t)/f

(m)
0 (t) ≥ ε for all t ∈ [0, 1], and

{

z(t)/f
(m)
0 (t)

}−1/(2m)
is Lebesgue integrable on[0, 1]

}

,

wherez(t) is given in (15) dependent on(u, x0). Further development in the Supplemental Mate-
rial establishes the following theorem that the objective functionalJ attains a unique minimum in
P. In fact, under the additional Assumptions 5 and 6, the theorem first shows the existence of an180

optimal solution. Moreover, since the objective functional J is strictly convex and the constraint
setP is convex, the uniqueness of an optimal solution also follows.

THEOREM 3. Under Assumptions1, 2, 5 and6, the optimization probleminf(u,x0)∈P J(u, x0)
has a unique solution inP.

Remark3. Given the optimal solution(u∗, x∗), z(u∗,x∗)(t) is bounded on[0, 1] due to its abso- 185

lute continuity. The lower boundε in Assumption 6 ensures that the optimalρ is bounded below
from zero. However, there is no guarantee that the optimalρ is bounded above due to the pos-
sibility for small values of

∣

∣f
(m)
0

∣

∣. To avoid this problem, one may impose an additional upper
bound constraint in Assumption 6. The proof of existence anduniqueness remains the same.

5. IMPLEMENTATION 190

Obtaining an explicit solution of (14) is difficult. Motivated from Pintore et al. (2006), we con-
sider approximatingρ by a piecewise constant function such thatρ(t) = ρj for t ∈ (τj−1, τj], j =
0, . . . , S + 1. Hereτ0 = 0, τS+1 = 1, and0 < τ1 < · · · < τS < 1 are interior adaptive smooth-
ing knots whose selection will be described below. When the integral in (14) is taken ignoring
the non-differentiability at the jump pointsτj (j = 1, . . . , S), we obtain

S+1
∑

j=1

[

ρ2j

∫ τj

τj−1

r2(t){f
(2m)
0 (t)}2dt+ ρ

−1/(2m)
j L0

∫ τj

τj−1

r(t)1−1/(2m)dt

]

.

Therefore, the optimalρj is

ρj =





L0

∫ τj
τj−1

r(t)1−1/(2m)dt

4m
∫ τj
τj−1

r2(t){f
(2m)
0 (t)}2dt





2m/(4m+1)

, j = 1, . . . , S + 1. (16)

Unfortunately, the optimal values for theρj depend onr(t) and the2m-th derivative of the
underlying regression functionf0(t). We replace them by estimates in practice.

Remark4. Rigorously speaking, such a step-function approximation toρ is not a valid solution
to (14) due to non-differentiability. However, simulations seem to suggest that such a simple195

approximation can yield good results. Furthermore, one canmodify suchρ, for example, to
make it satisfy Assumption 2. In a sufficiently small neighborhood of each jump point, one can
replace the steps by a smooth curve connecting the two steps such that the resulting function
satisfies Assumption 2. Hence the piecewise constantρ can be viewed as a simple approximation
to this smooth version ofρ. 200
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We now describe the detailed steps for approximate implementation. The first step is to se-
lect the interior smoothing knotsτj (j = 1, . . . , S). An abrupt change in the smoothness of the
function is often associated with a similar change in the conditional probability density ofy
given t. For example, a steeper part of the function often comes withsparser data, or smaller
conditional probability densities ofy givent. Hence, we first use thesscden function in the R205

packagegss to estimate the conditional probability densities ofy given t on a dense grid, say
sk = k/100 (k = 1, . . . , 100). Then with a givenS, we select the topS sk where the conditional
probability density changes the most fromsk to sk+1. A more accurate but considerably more
time-consuming way of selecting the smoothing knots is a binary tree search algorithm proposed
in Liu & Guo (2010).210

Estimation ofσ2(t) was first studied by Müller & Stadtmüller (1987). In this paper, we use
the local polynomial approach in Fan & Yao (1998); see Hall & Carroll (1989), Ruppert et al.
(1997), and Cai & Wang (2008) for other methods. This provides the weights for obtaining a
weighted smoothing spline estimate off(t), whose derivative yields an estimate off (2m)(t).
The functionq(t) can be replaced by an estimate of the density function ofti (i = 1, . . . , n). All215

these computations can be conveniently carried out using the R packageslocpol andgss.
Ideally, the optimalρj computed as above work well. However, similar to the finding in Storlie

et al. (2010), we have found that a powered-up versionργj for someγ > 1 can often help in

practice. Intuitively, this power-up makes up a bit for the under-estimated differences inf (2m)(t)
across the predictor domain.220

For the tuning parametersS andγ, we considerS ∈ {0, 2, 4, 8} andγ ∈ {1, 2, 4}. Theoreti-
cally a largerS might be preferred due to the better approximation of such step functions to the
real function. However, as shown in Pintore et al. (2006) andLiu & Guo (2010), anS greater
than 8 tends to overfit the data. The options forγ were suggested in Storlie et al. (2010). In tradi-
tional smoothing splines, smoothing parameters are selected by the generalized cross-validation225

(Craven & Wahba, 1979) or the generalized maximum likelihood estimate (Wahba, 1985). As
pointed out in Pintore et al. (2006), a proper criterion for selecting the piecewise constantρ(·)
should penalize on the number of segments ofρ. The generalized Akaike information criterion
proposed in Liu & Guo (2010) serves this purpose, which is a penalized version of the gener-
alized maximum likelihood estimate whereS is penalized similar to the degrees of freedom in230

the conventional Akaike information criterion. In this paper, we will use the generalized Akaike
information criterion to selectS andγ.

Once the piecewise constant penalty functionρ is determined, we compute the corresponding
adaptive smoothing spline estimate as follows. By the representer theorem (Wahba, 1990), the
minimizer of (2) lies in a finite-dimensional space of functions235

f(t) =

n
∑

i=1

ciKρ(ti, t) +

m−1
∑

j=0

djφj(t), (17)

whereci anddj are unknown coefficients,φj(t) = tj/j! for j = 0, . . . ,m− 1, andKρ is the
reproducing kernel function whose closed form expressionsat (ti, ·) with a piecewise-constant
ρ are given in Section 2.2 of Pintore et al. (2006). Plugging (17) into (2), we solve forc =
(c1, . . . , cn)

T andd = (d0, . . . , dm−1)
T by the Newton–Raphson procedure with a fixedλ. Here

λ can be selected by the generalized cross-validation or the generalized maximum likelihood240

estimate with the adaptive reproducing kernel function.
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6. SIMULATIONS

This section compares the estimation performance of different smoothing spline methods.
For traditional smoothing splines, we used the cubic smoothing splines from the function
ssanova in the R packagegss and the smoothing parameter was selected by the gener-245

alized cross validation score. For the spatially adaptive smoothing splines in Pintore et al.
(2006), we used an equally-spaced five-step penalty function following their implementation
and the optimal penalty function was selected to minimize the generalized cross validation
function (19) in their paper. For the Loco-Spline in Storlieet al. (2010), we downloaded the
authors’ original program from the site of the Journal of Computational and Graphical Statistics:250

http://amstat.tandfonline.com/doi/suppl/10.1198/jcgs.2010.09020/
suppl file/r-code.zip. For the proposed adaptive smoothing splines, we usedm = 1
and cubic smooth splines to compute the optimalρj ’s.

Two well-known functions with varying smoothness on the domain were considered under the
modelyi = f(ti) + ǫi with ǫi ∼ N(0, σ2). We usedn = 200 andti = i/n (i = 1, . . . , n) in all 255

the simulations and repeated each simulation on 100 randomly generated data replicates. The in-
tegrated square error

∫ 1
0 {f̂(t)− f0(t)}

2dt and point-wise absolute errors att = 0·2, 0·4, 0·6, 0·8

were used to evaluate the performance of an estimatef̂ . To visualize the comparison, we also
selected for each example and each method a data replicate with the median performance as
follows. The function estimates from each method yielded 100 integrated square errors. After260

ranking them from the lowest to the highest, we chose the 50thintegrated square error and its
corresponding data replicate to represent the median performance. We then plotted the function
estimates from these selected data replicates in Fig. 1-2 tocompare the median estimation per-
formances for different methods. To assess variability in estimation, we also superimposed in
these plots the point-wise empirical 0.025 and 0.975 quantiles of the 100 estimates. 265

We first consider data generated from the Heaviside functionf(t) = 5I[t>=0·5] with σ = 0·7.
Based on the error summary statistics in Table 1, all the adaptive methods outperform the tra-
ditional smoothing splines, with our method and that in Pintore et al. (2006) displaying clear
advantages in all the error measures. Furthermore, our method had the smallest mean integrated
square error. This advantage is better illustrated by the plots in Fig. 1. While the median estimates270

from all the three adaptive methods tracked the true function reasonably well, the Loco-Spline
estimates show greater variability than the other two adaptive methods in estimating the flat parts
of the Heaviside function. Further, our method does the bestjob in tracking down the jump. The
estimate of Pintore et al. (2006) can oscillate around the jump of the Heaviside function, probably
because the equally-spaced jump points forρ suggested in their paper sometimes have difficulty275

in characterizing the jump in the true function. This echoesthe finding in Liu & Guo (2010) that
the jump locations ofρ also need to be adaptive, a concept adopted in our method.

The second example is the Mexican hat functionf(t) = −1 + 1·5t+ 0·2φ0·02(t− 0·6) with
σ = 0·25, whereφ0·02(t− 0·6) is the density function ofN(0·6, 0·022). From Table 1 and Fig. 2,
the estimates from our method and the Loco-Spline have competitive performance and both 280

outperform the traditional smoothing spline and those of Pintore et al. (2006). The estimates of
Pintore et al. (2006) again suffer close to the hat.

For the estimates plotted in Fig. 1–2, we also plot the estimated log penalties for all the meth-
ods in Figure 3. In general, the penalty functions from the three adaptive methods track the
smoothness changes in the underlying functions reasonablywell. 285
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Table 1.Comparison of integrated square errors and point-
wise absolute errors for various estimates. Values, divided
by 100, are empirical means and standard deviations (in

brackets) based on 100 data replicates.
Method ISE PAE(0·2) PAE(0·4) PAE(0·6) PAE(0·8)

Heaviside function
SS 18(7) 15(11) 17(14) 16(14) 16(12)
PSH 5(2) 6(5) 6(5) 7(5) 7(5)
Loco 7(3) 10(8) 13(12) 11(10) 12(12)
ADSS 2(2) 7(5) 6(5) 6(5) 7(6)

Mexican hat function
SS 6·6(6·2) 8(6) 8(8) 96(72) 8(6)
PSH 1·1(0·3) 4(3) 8(5) 35(11) 8(5)
Loco 0·6(0·3) 4(4) 5(4) 13(10) 5(4)
ADSS 0·6(0·2) 4(3) 4(3) 15(10) 6(4)

ISE, integrated square error; PAE, point-wise absolute error; SS, smooth-
ing splines; PSH, splines in Pintore et al. (2006); Loco, Loco-Splines;
ADSS, adaptive smoothing splines in this paper
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Fig. 1. Estimates of the Heaviside function for the data
replicates with median integrated square errors. The plot-
ted curves are the true function (solid line), the spline es-
timate (solid line), and the point-wise empirical 0.025 and
0.975 quantiles (dotted lines). Top left: traditional smooth-
ing spline estimate. Top right: estimate from the method
in Pintore et al. (2006). Bottom left: Loco-Spline esti-
mate. Bottom right: proposed adaptive smoothing spline

estimate.
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mate. Bottom right: proposed adaptive smoothing spline

estimate.

7. APPLICATION

In this section, we apply the proposed adaptive smoothing splines to an example on elec-
troencephalograms of epilepsy patients (Liu & Guo, 2010). Previous research (Qin et al., 2009)
has shown that the low voltage frequency band 26-50Hz is important in characterizing electroen-
cephalograms and may help determine the spatial-temporal initiation of seizure. The left panel of 290

Figure 4 shows the raw time-varying log-spectral band powerof 26-50Hz calculated every half
second for a 15-minute long intracranial electroencephalogram series. The sampling rate was
200Hz and the seizure onset was at the 8th minute (Litt et al, 2001). The raw band powers are
always very noisy and need to be smoothed before further analysis. The middle panel shows the
reconstructions from traditional smoothing splines and the proposed adaptive smoothing splines.295

We also tried the Loco-Spline but the program exited due to a singular matrix error.
Traditional smoothing splines clearly under-smooth the pre- and post-seizure regions and over-

smooth the seizure period, because a single smoothing parameter is insufficient to capture the
abrupt change before the onset of the seizure. Our estimate smoothes out the noise on both
ends but keeps the details before the onset of seizure. In particular, we see a fluctuation in power300

starting from a minute or so before the onset of the seizure, which may be a meaningful predictor
of seizure initiation. The band power then increases sharply at the beginning of the seizure.
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Fig. 4. EEG data example. Left: Raw log spectral
band power. Center: Reconstructions from the traditional
smoothing splines (dashed) and the proposed adaptive
smoothing splines (solid). Right: Estimated log penalties
from the traditional smoothing splines and the proposed

adaptive smoothing splines.

Around the 10th minute at the end of the seizure, the band power drops sharply to a level even
lower than the pre-seizure level, an indication of the suppression of neuronal activities after
seizure. Afterwards, the band power starts to regain. But itstill fails to reach the pre-seizure level305

even at the end of the 15th minute. These findings concur with those in Liu & Guo (2010).
The proposed method took less than 10 minutes for the whole analysis, compared with 40-50

minutes for the method in Liu & Guo (2010). This is not surprising, since the latter not only
needs a dense grid search to locate the jump points but also lacks good initial step sizes.
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SUPPLEMENTARY MATERIAL

Supplementary Material available atBiometrikaonline includes the proofs of Theorems 1-3
and Corollary 1, and the detailed derivation of the Green’s function.

APPENDIX

In this appendix, we provide outline proofs of Theorems 1 and2. For the full proofs of these two 320

theorems and Corollary 1, we refer the readers to the Supplementary Material.
Outline Proof of Theorem1. For anyf, g ∈ Wm

2 andδ ∈ R,

ψ(f + δg)− ψ(f) = 2δψ1(f, g) + δ2
[

∫ 1

0

g2(t)dωn(t) + λ

∫ 1

0

ρ(t){g(m)(t)}2dt
]

, (A1)

where

ψ1(f, g) =

∫ 1

0

σ−2(t){f(t)− h(t)}g(t)dωn(t) + λ

∫ 1

0

ρ(t)f (m)(t)g(m)(t)dt. (A2)

LEMMA A1. The functionf ∈ Wm
2 minimizesψ(f) in (2) if and only ifψ1(f, g) = 0 for all g ∈Wm

2 .

Let g(t) = tk(k = 0, . . . ,m− 1) in (A2). An application of Lemma A1 shows that iff minimizes
ψ(f), then

∫ 1

0

σ−2(t){f(t)− h(t)} tkdωn(t) = 0 (k = 0, 1, . . . ,m− 1).

We first have

ľ1(f, 1)− ľ1(h, 1) =

∫ 1

0

σ−2(t){f(t)− h(t)}dωn(t) = 0.

Further,

ľ2(f, 1)− ľ2(h, 1) =

∫ 1

0

∫ s

0

σ−2(t){f(t)− h(t)}dωn(t)ds =

∫ 1

0

σ−2(t){f(t)− h(t)} t dωn(t) = 0.

Similarly, ľk(f, 1) = ľk(h, 1) for k = 1, . . . ,m. 325

LEMMA A2. If f ∈Wm
2 satisfiešlk(f, 1) = ľk(h, 1), k = 1, . . . ,m, then for allg ∈ Wm

2 ,

ψ1(f, g) =

∫ 1

0

ψ2(f) g
(m)(t)dt, (A3)

where

ψ2(f) = λ ρ(t) f (m)(t) + (−1)m {ľm(f, t)− ľm(h, t)}. (A4)

Let B+ = {t ∈ [0, 1] : ψ2(f) > 0} andB− = {t ∈ [0, 1] : ψ2(f) < 0}. Define g(m)
+ (t) = −IB+(t)

andg(m)
− (t) = IB−(t), whereI is the indicator function. Sinceψ1(f, g) = 0 for all g ∈ Wm

2 , we have
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ψ1(f, g+) < 0 andψ1(f, g−) < 0, unlessB+ andB− are of measure zero. This shows thatψ2(f) = 0330

almost everywhere.
Outline Proof of Theorem2. It follows from (9) thatr−1(t)f̂(t) = V1(t) + V2(t) + V3(t) + V4(t),

where

V1(t) =
dm

dtm

∫ 1

0

P (t, s)lm(f0, s)ds, V2(t) =
dm

dtm

∫ 1

0

P (t, s){ľm(h, s)− ľm(f0, s)}ds,

V3(t) =
dm

dtm

∫ 1

0

P (t, s){lm(f̂ − f0, s)− ľm(f̂ − f0, s)}ds, V4(t) =
2m
∑

k=1

akC
(m)
k (t).335

Let f̄ minimize the functional
∫ 1

0

r−1(s){f(s)− f0(s)}
2ds+ λ

∫ 1

0

ρ(t)f (m)(s)2ds.

Similar to Theorem 1, we have

(−1)mλρ(t)f̄ (m)(t) + lm(f̄ , t) = lm(f0, t), (A5)

and

lm(f̄ , t) =

∫ 1

0

P (t, s)lm(f0, s)ds. (A6)

Hence,V1(t) = r−1(t)f̄(t). Taking themth derivative of both sides of (A5), we get

(−1)mλ{ρ(t)f̄ (m)(t)}(m) + r−1(t)f̄(t) = r−1(t)f0(t).

Recall thatf0 is 2m times continuously differentiable andβ = λ−1/(2m). Combining this with (A6), it is
easy to show that̄f (k)(t) → f

(k)
0 (t) asβ → ∞ for k = 1, . . . , 2m. Therefore,

V1(t) = r−1(t)f0(t) + (−1)m−1λ{ρ(t)f
(m)
0 (t)}(m) + o(λ).

PROPOSITION A1. Assume that a functioñJ(t, s) satisfies(−1)m ∂m

∂sm J̃(t, s) =
∂m

∂tmP (t, s), t, s ∈

[0, 1]. ThenJ̃(t, s) +
∑m−1

k=0 (−1)kζk+1(s)J̃k(t) = (r(s)/r(t))J(t, s), where

ζk(s) =

∫ 1

s

· · ·

∫ 1

sk−3

∫ 1

sk−2

dsk−1dsk−2 · · · ds1, J̃k(t) =
∂k

∂sk
J̃(t, s) |s=1,

andJ(t, s) is the Green’s function for

(−1)mλr(t){ρ(t)u(m)(t)}(m) + u(t) = 0. (A7)

By applying Proposition A1, we have, for anyt ∈ (0, 1),

V2(t) =

∫ 1

0

(−1)m
∂m

∂sm
J̃(t, s)ľm(h− f0, s)ds

=

∫ 1

0

J̃(t, s)d{ľ1(h− f0, s)}+ (−1)m
m−1
∑

k=1

(−1)k−1J̃m−k(t)ľm−k+1(h− f0, 1)

=
1

n

n
∑

i=1

r(ti)

r(t)
J(t, ti)σ

−1(ti)ǫi + higher order terms.

Eggermont & LaRiccia (2006) established the uniform error bounds for regular smoothing splines. We
adopt the same approach as in Eggermont & LaRiccia (2006) foradaptive smoothing splines; the details
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are omitted here. Forλ≪ (n−1 logn)2m/(1+4m), we obtain

‖f̂ − f0‖ = O

[

{max
(

log 1
λ , log logn

)

nλ1/(2m)

}1/2
]

.

Therefore,‖V3‖ ≤ O(βm)Dn‖f̂ − f0‖. Finally, it is shown in detail in the Supplementary Material that 340

‖V4‖ is of orderO(βm) exp[−βQβ(t){Qβ(1)−Qβ(t)}], and thus a negligible term in the asymptotic
expansion ofr−1(t)f̂(t). This completes the representation forf̂ .
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