
MA 323 Geometric Modelling

Course Notes: Day 22

B-Splines and NURBS

David L. Finn

Today, we will discuss B-splines. The name B-spline arises from basis splines. Bezier curves
and Bezier spline are a special case of B-splines. The advantage over B-splines is that they
are more flexible and allow one to create a wider variety of curves. The disadvantage of
B-splines is the complexity in their definition.

The major difference between B-splines and Bezier splines is that the B-splines vertices each
are given their own basis functions. Rather than Bezier splines where the basis function
(the Bernstein polynomials) are used on different control points.

22.1 Definition of a B-spline

The form of the definition of a B-spline is very much like the form of a Bezier curve, except
that it uses different basis functions. Recall a Bezier curve is given by

n∑

i=0

Bn
i (t) pi.

A B-spline is given by
n∑

i=0

Ni,k(t) pi.

The difference is the basis function instead of the Bernstein polynomials Bn
i (t) the B-splines

use the functions Ni,k(t) that are defined by the Mansfield, de Boor, Cox recursion formulas.

Before giving the exact description of the basis functions, we will list some of the properties
of the basis functions.

• Ni,k(t) ≥ 0 for all values of t.

• ∑n
i=0 Ni,k(t) = 1 for the parameter values of the curve tmin ≤ t ≤ tmax. Thus, we

have a barycentric combination of the control points b0, b1, · · · , bn. One difference
is that the interval tmin ≤ t ≤ tmax must be determined from the definition of the
B-spline.

• Ni,k(t) is a piecewise defined polynomial curve of degree k − 1.

• The domain of each basis function is the entire real line, every t ∈ R, but each basis
function is only nonzero for a finite segment. The exact segment is determined by a
knot sequence.



22-2

22.2 The B-spline Basis functions

To define the B-spline basis functions, we need a knot sequence U , a nondecreasing sequence
of real numbers u0 ≤ u1 ≤ · · · ≤ um. Next, we define the functions 0th basis functions
Ni,0(t) by

Ni,0(t) =

{
1 if ui ≤ t ≤ ui+1

0 otherwise

then we define recursively the functions Ni,k(t) by the recursion formulas

Ni,k(t) =
t− ui

ui+k − ui
Ni,k−1(t) +

ui+k+1 − t

ui+k+1 − ui+1
Ni+1,k−1(t).

To handle the possibility of 0/0 since the knots are now not necessarily distinct, we set
0/0 = 0 for the purpose of defining these functions. We list a few more properties of the
functions Ni,k(t) that are a consequence of the definition.

• Ni,k(t) = 0 for t outside the interval [ui, ui+k+1]. This property is called the local
support property.

• In any given interval of the form uj ≤ t ≤ uj+1 at most k + 1 of the basis functions
Ni,k are nonzero, namely the functions Nj−k,k, Nj+1−k,k, · · · , Nj,k.

• The interval for which a B-spline curve is defined is uk ≤ t ≤ um−k, for in this interval∑n
i=0 Ni,k(t) = 1.

On the next few pages we provide some figures that display the basis functions generated
by the Manfred-de Boor-Cox recursion described above.

Once, you have the basis functions it is easy to create B-spline curves. It is important to
note that from the algorithm, in general you need to provide more knots than control points
to generate a B-spline.

The 3rd basis functions Ni,3(t) for a B-spline with knot sequence U = [0, 1, 2, 3, 4, 5, 6, 7] so
i ranges from 0 to 3 is given below.

The 3rd basis functions Ni,3(t) for a B-spline with knot sequence U = [0, 0, 0, 1, 2, 3, 4, 4, 4]
so i ranges from 0 to 4 is given below.

22.3 B-spline curves

A B-spline curve is defined by a knot sequence (a vector) U = [u0, u1, · · · , um], a set of
control points [b0, b1, · · · , bn], and an order k (a real number). There is a relation between
the number of knots m+1, the number of control points n+1, and the order of the curve k.
The number of control points n + 1 must equal the number of basis functions m− k. [The
number of 0th order basis functions Ni,0 is m, and each time through the recursion there is
one less basis function. There are m − 1 1st order basis functions, m − 2 2nd order basis
functions.]

The knot sequence and the order are used to create the basis functions Ni,k(t) and provide
the domain of the curve. The control points then provide the shape of the curve. The
advantage of B-splines is that you can alter the curve either by changing the knot-sequence
or the control points. In fact, certain knot sequences are used for different types of curves.
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Figure 1: Basis functions for knot sequence U = [0, 1, 2, 3, 4, 5, 6, 7]
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Figure 2: Basis functions for knot sequence U = [0, 0, 0, 1, 2, 3, 4, 4, 4]

The knot sequence
U = [a · · · , a︸ ︷︷ ︸

k+1

, uk+1, · · · , um−k−1, b, · · · , b︸ ︷︷ ︸
k+1

]

yields a nonperiodic knot sequence. This type of knot sequence has the property that it does
interpolate the end-points. To see this, you have to show that the knot sequence defines a
curve on the interval a ≤ t ≤ b, and the basis functions satisfy N0,k(a) = 1, Ni,k(a) = 0 for
all i > 0 and also Nn,k(b) = 1, Ni,k = 0 for all i < n = m − k − 1. From these properties,
one has that c(t) =

∑
Ni,k pi satisfies c(a) = b0 and c(b) = bn.

In fact, Bezier curves are a specific type of B-spline with a nonperioidic knot sequence. The
knot sequence

U = [0, · · · , 0︸ ︷︷ ︸
k+1

, 1, · · · , 1︸ ︷︷ ︸
p+1

]

defines the Bernstein polynomials of order k. A piecewise Bezier curve of L-segments is
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given by a knot sequence of the form

U = [0, · · · , 0, 1, · · · , 1, 2 · · · , 2, · · · , L, · · · , L].

In fact, any Bezier spline can be derived as a B-spline with a nonperiodic knot sequence.
All you have to do is determine the right type of knot sequence.

Periodic uniform knot sequence

U = [0, 1, 2, · · · ,m]

yield basis functions that are translates of each other, which means

Ni,k(t) = Ni−1,k(t− 1) = Ni+1,k(t + 1).

These type of knot vectors are useful for designing periodic curves, i.e. circles. To design
a periodic curve, one only needs to repeat the control points at the beginning and end to
get smoothness properties to coincide in both the forward and backward directions of the
parameter.

Essentially, a knot sequence is used to prescribe the behavior of the B-spline at the end
points. They are also used to define the smoothness properties of B-splines, as they control
the smoothness of the B-spline at the knot values t = ui.

Some of the properties of B-splines curves are

• Affine invariance. A(c(t)) =
∑

Ni,kA(pi). This is a property of the barycentric
combinations to define the curve.

• Convex hull property. The curve c(t) is contained in the convex hull of the control
points. This is a property of barycentric combinations with nonnegative coefficients.
The curve actually satisfies a stronger condition as the basis functions have compact
support (each basis function is nonzero only on a finite interval), so each part of the
curve is only effected by a finite number of control points.

• Local control property. Moving a control point pi only alters the curve near that
control point. This is another result of the compact support of the basis functions.

• The smoothness (differentiability) of a B-spline is given by the multiplicity of the inte-
rior knots. On each interval ui < t < ui+1 a B-spline curve is infinitely differentiable.
At the knots, the curve’s smoothness depends on the multiplicity of the knot and the
order of the curve. Let ui have multiplicity r (ui−1 6= ui = ui+1 = · · · = ui+r−1 6=
ui+r), then the curve is differentiable at least upto order k − r.

22.4 Relation between Number of Points and Knots

There is an important relation between the number of control points, number of knots, and
the order of a B-spline curve. Given a knot sequence U = [u0, u1, · · · , um], there are m + 1
knots. When computing the basis functions for a curve of order k, there are m − k basis
functions. [There are m basis functions of order zero, m − 1 basis functions of order one,
m − 2 basis functions of order two, etc.] This is a direct result of the inductive argument
for creating the basis functions. To define a B-spline via the basis functions,

b(t) =
n∑

i=0

Ni,k(t) pi
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where Ni,k(t) are the basis functions and pi are the control points. We must have the
number of control points n + 1 equal to the number of basis functions m− k.

When creating B splines, curves. It is worth noting that a curve is only defined when the
sum of the basis functions equals one, so we have a barycentric representation of the points
on the curve from the control points. It is a book-keeping exercise (using the definition of
the basis functions) to show that the sum of the basis functions equals one on the interval
uk ≤ t ≤ um−k. An important observation is that we can only define a curve of order
0 < k < m/2.

B-spline curves of order 1 curves are just “crooked lines” or a linear interpolant of the control
points (as long as no knots are repeated). B-spline curves of order 1 are thus uninteresting.
The higher order curves are much more interesting. One other point about the order of the
curve, an order k curve is k − 1 times differentiable in general, meaning that an order 2
curve is in general C1 and an order 3 curve is in general C2, at least if no knots are repeated
(other than the first and last knots, see below).

22.5 Control Point Interpolation

A B-spline will interpolate control points only if the corresponding basis function has attains
the value 1. The construction of the basis functions imply that 0 ≤ Ni,k(t) ≤ 1. A further
examination of the basis functions definition shows that the maximum of the order 1 basis
functions is equal to 1 as long as no knots are repeated more than once.

In general, to interpolate the first and last control points p0 and pn with a B-spline curve
of order k, it is necessary that the first k + 1 knots are repeated and the last k + 1 knots
are repeated. To interpolate interior control points, you need to repeat a knot k times.
The other possibility is to repeat a control point, the sequence of control points can have
pk = pk+1. If this is done, one can also force the curve to interpolate a control point.

For instance, a order 2 curve with the knot sequence U = [0, 0, 0, 1, 2, 2, 2.5, 4, 4, 4] will
interpolate the first control point and the last control point. The basis functions for this
knot sequence are
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Figure 3: Basis functions for knot sequence U = [0, 0, 0, 1, 2, 2, 2.5, 4, 4, 4]

From the plot, one sees that there are seven basis functions and the basis functions N0,2,
N3,2 and N6,2 have maximum values equal to one, so that the control points p0, p3 and p6

are interpolated. Below is an example of a B-spline curve generated with this knot sequence.
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Figure 4: A B-spline using the knot sequence U = [0, 0, 0, 1, 2, 2, 2.5, 4, 4, 4]

Forcing a B-spline to interpolate a control point (other than the first and last control
point) has an immediate effect on the smoothness of a B-spline curve. Repeating knots
decreases the smoothness of the curve by one order of differentiability for each time an
interior knot is repeated. For instance, the order 2 curve generated from the knot sequence
U = [0, 0, 0, 1, 2, 2, 2.5, 4, 4, 4] above interpolated the control point p3 with the affect that
unless the control points are arranged correctly the curve will have a corner at p3. It will
not be smooth.

It is very important to understand that the knot sequence determines the basis functions
once an order has been chosen for the basis functions. Using the same knot sequence
U = [0, 0, 0, 1, 2, 2, 2.5, 4, 4, 4], an order 3 curve has the basis functions below so the curve is
only defined on the interval 1 ≤ t ≤ 2.5, and we have no control points interpolated as none
of the basis functions achieves the maximum value 1.
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Figure 5: Cubic basis functions for the knot sequence U = [0, 0, 0, 1, 2, 2, 2.5, 4, 4, 4]

An example of a cubic B-Spline with the knot sequence U = [0, 0, 0, 1, 2, 2, 2.5, 4, 4, 4] is
given below.
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Figure 6: A B-spline using the knot sequence U = [0, 0, 0, 1, 2, 2, 2.5, 4, 4, 4]

22.6 Uniform Periodic Knot Sequences

First, we considered a uniform periodic knot sequence. In these knot sequences, the basis
functions are all translates of a basic function. For instance, consider the knot sequence
U = [0, 1, 2, 3, 4, 5, 6, 7, 8] with k = 3. The basis functions are
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Figure 7: Basis functions for the knot sequence U = [0, 1, 2, 3, 4, 5, 6, 7, 8]

which are all translates of the function
A B-spline created with these basis functions is shown below.

A main use of uniform periodic knot sequences is for creating periodic curves by repeating
the control points. The knot sequence U = [0, 1, 2, 3, 4, 5, 6, 7, 8] with the control points
[p0, p1, p2, p3, p0, p1] creates a “smooth” curve, that appears periodic. This is very useful for
creating approximations to circles and other periodic curves, see diagram below of an order
2 curve.

One can use nonuniform periodic knot sequences one just has to repeat the pattern of the
knots at the beginning of the knot sequence at the end of the knot sequence. For instance,
the sequence

U = [0, 1, 5, 7, 10, 12, 15, 15, 18, 20, 21, 25, 27, 30]
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Figure 8: Base Basis function for the knot sequence U = [0, 1, 2, 3, 4, 5, 6, 7, 8]
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Figure 9: A B-spline using the knot sequence U = [0, 1, 2, 3, 4, 5, 6, 7, 8]

is a nonuniform periodic knot sequence. Applying this knot sequence to a sequence of control
points [p0, p1, p2, p3, p4, p5, p6, p7, p8, p0, p1] repeating the first two control points generates a
periodic curve of order 2. The trick is to repeat enough of the knot sequence to translate k
basis functions. The first k basis functions need to be repeated as the last k basis functions.
For a quadratic curve, you need to repeat the spacing of the first 5 knots in the last 5 knots,
see basis functions below.
An example of such a periodic curve is given below. Notice the curve passes through p6.
This is because 15 is repeated twice as a knot.

22.7 Nonperiodic Knot Sequences

The important features of nonperiodic knot sequences are described above by the interpola-
tion properties of B-spline curves and repeating knots in the knot sequence. We only have
to state what we mean by a nonperiodic knot sequence. A nonperiodic knot sequence is
given by anything that is not a periodic knot sequence. The most useful nonperiodic knot
sequence are given by repeating the first and last knots k +1 times so that the first and last
control points are interpolated. Other choices of repeated knots can be used to prescribed
the tangent vector but leave the endpoints of the curve free. The use of the word nonperi-
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Figure 10: Periodic quadratic curve using the knot sequence U = [0, 1, 2, 3, 4, 5, 6, 7, 8]
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Figure 11: Quadratic basis functions for nonuniform periodic knot sequence

odic is used to represent the fact that if you repeat the last k the control points with the
first k control points the curve will not appear to represent a periodic curve.

It useful to understand that one does not normally directly manipulate the knot sequence
but rather specifies the type of behavior desired at certain points. For instance, there are
specific choices of knot sequences to prescribe the tangent line at an endpoint of a curve and
ensure the curvature is zero at this point. The knot sequence allows one to specify physical
properties of the curve at a point defined as the endpoint of the curve or an interpolated
point. We will not go into these properties in detail. If you are interested, consult the text
by Farin CAGD.

22.8 NURBS

A NURB is a non-uniform rational B-Spline. They are rational B-Splines, meaning that
they are plane curves defined by perspectively projecting a spatial B-Spline onto the plane
x = 1. This combines the ability to control the knot sequence to achieve desired interpolation
properties with the ability to control the weights of the control points in rational curves to
adjust the shape of the curve. The fine control allowed by manipulating control points,
knots and weights has made NURBS the industrial standard for design.
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Figure 12: Periodic quadratic curve using the nonuniform periodic knot sequence


