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ABSTRACT 

An algorithm is described for approximating an unknown function f(x), 

given many function values containing random noise. The approximation 

constructed is a cubic spline g(x) with sufficient basis functions to represent f(x) 

accurately. The basis-function coefficients are determined by minimizing a 

combination of the infidelity E (the mean-square error between g(x) and the data), 

and the roughness T (which is a measure of the tortuosity of g(x)). The quantity 

minimized is E+pT, where p is a smoothing parameter. A suitable value of p is 

determined by cross validation. 

Results of numerical tests are reported which show that this algorithm is 

superior to least-squares cubic splines: in general the statistical errors are 

substantially less, and they are insensitive to the number of basis functions used. 

INTRODUCTION 

We address the familiar problem of approximating an unknown function 

f(x) in an interval [O,L] given samples of the function values containing random 

noise. The N sample values fi are at the locations xi (i = 1,2, ...., N), and can be 

written 

Copyright O 1988 by Marcel Dekker, Inc. 
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POPE AND GADH 

Here qi are the (unknown) random errors that are assumed to be independent and to 

have mean zero 

The variances 

may or may not be known. 

The general problem described can take on different appearances depending 

on the number of samples N, the nature of the function f, and the magnitude of the 
random error o. Here we are mainly concerned with a simple smooth function f ,  

and with dense data. By this we mean that the number of samples N is very large 

(10,000 say), and that the number density of sample points is nowhere small. But 

at the same time the error associated with each sample is large, perhaps of the same 

magnitude as f itself. Problems of this type arise in Monte Carlo methods for 

simulating turbulent flows (Nguyen & Pope 1984, Pope 1985, Haworth & Pope 

1987a,b, Haworth 1987, Anand, Pope & Mongia 1988). 
In the simplest case x the single spatial variable, and fi a F(x~) are samples 

of a property (e.g. velocity, temperature, composition) of a fluid particle located at 

xi. (F(x) is a random function.) The Monte Carlo method provides N sample pairs 
(xi,fi) from which the expectation f(x) a <F(x)> is to be deduced. 

The present work, and much previous work on this problem, is based on 

cubic splines (see de Boor 1978, Lancaster & Salkauskas 1986). We approximate 

f(x) by a cubic spline g(x): 

where bk(x) are fixed cubic spline basis functions, and ak are coefficients to be 

determined from the data. If the number of basis functions M is chosen to equal the 

number of samples N, then a spline g(x) can be formed that passes through all the 

data points. But since the data contain random errors, this is not a good 

approximation to f(x). 
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FITTING NOISY DATA 351 

Since the function f(x) is, by assumption, simple and smooth, it can be 

"accurately" represented by far fewer basis functions. Although it is imprecisely 

defined, it is useful to denote by M, the minimum number of basis functions needed 

to represent f(x) accurately. In most cases - and certainly for dense data - M, is 
much less than N. Rather than choosing M = N, we could choose M - M, and 

determine the coefficients by least squares. That is, we choose the coefficients ak to 

minimize the infidelity (or mean square error) 

where wi are numerical weights ascribed to each sample. Although simple and 

robust, the least-squares method has the disadvantage that the optimum choice of M 
is not known apriori. If M is too small, g cannot represent f accurately; if M is too 

large, g tends to follow the random errors. Test results to show this are presented 

in the third section. 

We follow Reinsch (1967) in using smoothing splines (see also, de Boor 

1978; and Schoenberg 1964). In this approach, the quantity minimized is a 

combination of the mean-square error and the tortuosity - or lack of smoothness. 

The roughness (or tortuosity) T of the approximant g is defined by 

where primes denote differentiation with respect to x. In Reinsch's algorithm the 

number of basis functions M is equal to the number of samples N with the spline 

knots being at the data points xi: and for a given value of a (non-negative) 

smoothing parameter p, the basis function coefficients ak are chosen to minimize 

The choice p = 0 yields the spline that passes through the data (or the least-squares 

spline if M is chosen to be less than N). At the opposite extreme, as p tends to 

infinity, g(x) tends to the straight line with the minimum least-squares error. 
Reinsch suggests a means of selecting a value of p based on the variance 02(xi) of 

the error in the data. 
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POPE AND GADH 

In the present context there are two difficulties with Reinsch's algorithm. 

First, the result g(x) is found to be extremely sensitive to the choice of p; and a 

simple strategy of specifying p a priori is unsatisfactory. Second, the choice M = N 

can lead to a very large (10,000, say) system of linear equations. 

The algorithm that we present and demonstrate here overcomes both of 

these problems. First a near-optimum value of the smoothing parameter p is 

obtained by employing the statistical technique of cross validation. Second, the 

number of basis functions is chosen to be much less than N, but larger than M,. In 

contrast to the least squares method, here the choice of M is not crucial, since 

smoothing is effected by minimizing the roughness, not by restricting the number 

of degrees of freedom (M) of the approximant g(x). 

In the last ten years there has been considerable work on cross-validated 

cubic splines. Wahba and Wold (1975) used a "leaving-out-one" cross-validation 

techniques to determine the smoothing parameters p for the Reinsch spline; while 

Craven and Wahba (1979) did the same using "generalized cross validation" 

(GCV). Improved algorithms to determine p using GCV have been developed by 

Elden (1984), Hutchinson (1985) and Woltring (1986); while extensive theoretical 

results have been obtained by Wahba (1985) and Li (1986). The cross validation 

technique used here is somewhat different, being better suited to the case of dense 

data. It could be termed the "leaving-out-half" method, as explained in the next 

section. 

The use of the Reinsch spline - in which the number of basis functions is 

equal to the number of data points - is clearly inappropriate to dense data. Using a 

convenient set of basis functions - independent of the data - was suggested by 

Wahba (1980) and has been used subsequently by Nychka et al. (1984) and by 

O'Sullivan & Wahba (1985). 

In the next section the algorithm is described. In the third section, for a 

simple test problem, the method is comprehensively tested and compared to the 

least-squares method. The general performance of the method, variants and 

extensions are discussed in the fourth section. Finally the main conclusions are 

drawn. 

ALGORITHM 

To give an overview of the algorithm: the data are first divided into two 

independent sets of samples. Given p, a smoothing cubic spline is determined from 
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FITTING NOISY DATA 353 

each data set. The cross error Z(p) is defined to be the mean-square error between 

each spline and the data set that was not used in its determination. The value of the 

smoothing parameter used is p* - the value that minimizes Z(p). The value of p* 

is determined iteratively. 

The ith of the N samples has value fi, location xi and is ascribed a numerical 

weight wi. (This may be unity, or @xi)-' if 02(x) is known.) These N samples are 

divided into two independent sets: 

It is important that the two sets be statistically independent; and it is desirable that 

the number density of samples along the x-axis be approximately the same. If the 

samples are ordered in x, or if their ordering is random, the division can simply be 

achieved (for even N) by: 

The number of basis functions M is selected, and the cubic spline basis 

functions bk(x) are determined. (We choose equally spaced knots.) Based on the 

two data sets and the value of p, two splines are formed: 

The basis-function coefficients $) are determined by minimizing 

where E ( ~ )  and T ( ~ )  are defined in an obvious way by analogy to Eqs. (5) and (6). 

By standard techniques (Dahlquist et al. 1974; de Boor 1978), the solution 

to the minimization problem can be wrinen in matrix form as 
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3 54 

where 

POPE AND GADH 

and the components of B C and Y are - (s)' - -(s) 

and 

In Eq. (13), the matrix B + pC is M x M, banded (with bandwidth 7), 
-(s) - 

syrnrnemc, positive-definite. Hence the equation can be solved very efficiently 
using the Cholesky square-root method. Note that a depends on p, but that B 

(s) -(s)' 
C a n d x  do not. - (s) 

( 1 )  ( 2 )  For a given value of p we obtain two approximants g (x,p) and g (x,p) 
to the underlying function f(x). In order to determine a near-optimum value of p we 

use cross validation. The cross error is defined by 

This is the mean-square error between the sets of data (1 and 2) and the 

approximants based on the other data sets (2  and 1). The minimizer p* of Z(p) is 

chosen as the smoothing parameter. 

The determination of p* is accomplished by an iterative algorithm based on 

Newton's method. In order to implement Newton's method we need to determine 
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FITTING N O I S Y  DATA 355 

the first two derivatives of Z with respect to p; this in turn requires the 
determination of the f is t  two derivatives of a 

(4' 
Let p' (p) and p" (p) be the first and second derivative of a (p). From 

(s) ( 4  -6) 
Eq. (13) we obtain 

To simplify the subsequent equations we replace (s), a'(,) and a" by (s) 
a(,), QI'~,) and QI" defined by 

( 4  

= a(2) = a(l), etc. 

Now Eq. (18) can be rewritten in matrix form as 

Differentiating with respect to p we obtain 

and differentiating again 

At p = p*, Z(p) is a minimum and R(p) is zero. Starting from an initial 

guess p(O) = 0, Newton's method to solve the equation ~ ( p * )  = 0 results in the 
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POPE AND GADH 

In summary, one Newton iteration consists of the following steps. Given 

p(n), Eqs. (13), (19) and (20) are solved for a(s), a'(s) and a"(s). (This requires 

two Cholesky decompositions and six back substitutions. Note that the coefficients 

, C and Y do not need to be re-evaluated on each iteration.) Then R(~("))  
q s )  - -(s) 

and its derivative are evaluated from Eqs. (23) and (24). The next Newton iterate 

p(n+l) is then obtained from Eq. (25). 

Several comments about the iteration are called for. First, since Newton's 

method is not globally convergent, it is combined with a bisection method: if the 

next Newton iterate p(n+l) lies outside the currently known range [pmin, pmax] of 

p*, then p(n+l) is replaced by (1/2)(p,in + p,,,). Initially Pmin is zero and Pmax is 

set to (machine) infinity. As the iteration proceeds pmin and Pmax are updated. 

Second, it is recognized that the solution of R(p) = 0 guarantees only a local 

minimum of Z(p). Tests indicate that usually Z(p) is a simple convex function and 

hence the global minimum is obtained. But in general we accept the first local 

minimum obtained by the iteration. 

Once the smoothing parameter p* has been obtained, the coefficients ql)(p*) 

and q2)(p*) are determined. The final result is the spline approximant Eq. (4) with 

the coefficients being 

NUMERICAL TESTS 

We present numerical results that determine the performance of the cross- 

validated cubic smoothing splines for a simple test problem. The performance of 

the new algorithm is compared to that of least-squares cubic splines. 

Test Problem 

The function f(x) selected for the test is 

f(x) = sin x , (27 
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FITTING NOISY DATA 357  

in the interval [0,4x]. The N samples are divided into two sets of N1/2 = N/2 

samples each For the first set, the sample locations xjl)(i = 1,2, ..., N1n) are 

randomly distributed uniformly in the interval [0,4n]. For convenience, the sample 

locations of the second set are chosen to coincide with the first: 

(This choice simplifies the algorithm since then B(1) and B(2) are equal, see Eq. - - 

(IS).) The samples $I) have a uniform Gaussian error of standard derivation o. 

That is 

where I?) are N independent standardized Gaussian random numbers. The 

numerical weights w/" are set to unity. 

Mean-Sauare Errors 

Numerical tests are performed by comparing the spline approximant g(x) to 

the known test function f(x). It is found that the error in the approximant is 

significantly greater near the boundaries (x=O and x=4n) than it is in the central 

portion of the interval. The reason for this (and a means of reducing these 

boundary errors) is discussed in the next section. In order that the numerical tests 

are not unduly influenced by the boundaries, we base our measures of error on the 

interval [n,3n]. 

The root-mean-square (rms) error EO is defined by 

where angled brackets denote expected values. It should be realized that g(x) is a 

random function. For one realization (i.e. one set of random numbers I:)) we can 
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POPE AND GADH 

define the error go by 

Then we have 

In the results reported below, Q is estimated by averaging E: over 100 independent 

realizations: the resulting statistical error in Q is found to be less than 10%. 

In some applications - including that which motivated this study - in 

addition to an approximation to f(x), we require approximations to the derivatives 

f (x) and f '(x). If g(x) is a good approximation to f(x), it by no means follows that 
gt(x) is a good approximation to f (x). (Consider, for example, g(x) n f(x) + sin 

(XI$) for small v.) Hence we also examine e l  and ~ 2 ,  the rms errors in g'(x) and 

gM(x), defined by 

As with ~ g ,  ~1 and ~2 are estimated from 100 independent realizations. 

Inde~enden: Parameters 

The errors Q, ~1 and ~2 depend on the values of the following parameters: 

M, the number of basis functions; o, the standard deviation of each sample; and, 

N1j2, the number of samples in the range [ A , ~ A ] .  In the numerical tests, the values 

used were: 
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FITTING N O I S Y  DATA 359 

For the case of dense data ( N I ~  >> M,), we expect, and indeed find, that 
the errors em depend on o and Nln only through the parameter 

This important quantity we term the uncertainty in the data, and its inverse y 1 is the 

certainry. 
To illustrate the significance of y, we consider the quantity 

as an approximation to 

Elementary statistical calculations show that the rms statistical error in this 
approximation is y. This result has two significances. First, the error depends on 

N1/2 and o only as they appear in y: doubling N1/2 has the same effect as 

decreasing o by a factor of 4. Second, since estimating f is easier than estimating 

f(x), the best that can be expected of the smoothing algorithm is that Q is not much 

greater than y. 

In light of these considerations we define normalized rms errors by 

Reliminary tests showed that indeed EL depend on N1/2 and o solely through y 

* 
Hence the objective of the tests is to determine E, as functions of M and y. 

Results 

* 
Figure 1 shows the normalized error eO as a function of the number of basis 

functions M, with the uncertainty y as a parameter. For moderate and large M 
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POPE AND GADH 

FIG. 1: Rrns error in g, E*,  against number of basis functions, M, for different 
0 

uncertainties: y = 3.1 x 104, 4.4 x 10-4, 6.2 x 10-4, 8.7 x 

1.2 x 10-3. (o  = 1/64). Cross-validated smoothing splines. 

(M220). the error appears small (EL - 3) and independent of M and y. But for 

small M (M=10 and M=15) the error is large and increases with yl. 

For small M (M=10, say) there are too few basis functions to represent the 
function f(x) Consequently, even if there is no random error (i.e. o = y = 0), there 

is a significant deterministic error. Because of this, for small y, U, is independent 

of y and hence ei varies as yl. 

As M increases, the deterministic error decreases rapidly. At what stage it 

becomes negligible depends on the magnitude of the random error. Figure 1 
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FITTING NOISY DATA 361 

FIG 2: Rms error E* as a function of the uncertainty y for different numbers of 
0 

basis functions. Symbols: 0, M = 20; 0,  M = 25; 0 ,  M = 30;. , M 
= 35; A , M = 40; A , M = 45; v , M = 50; , M = 55. Cross- 
validated smoothing splines. 

suggests that with 20 basis functions the deterministic error is negligible. The 
results to follow confirm this conclusion provided y is greater than 10-3. 

* 
To study more closely the error eO in cases where the deterministic error is 

* 
small, in Fig. 2 we show eO against y for different values of M 2 20. For not too 

small values of y (y > say), E; is in the range 2-3 and increases weakly with 

the certainty yl. Most importantly, the error depends little on M: thus, the choice 

of the number of basis functions is not crucial (provided only that M 2 M, = 20). 
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POPE AND GADH 

10-1 lo-= 1 o-3 1 0-4 

FIG. 3: Same as Fig. 2. Least-squares cubic splines. 

For very small uncertainties (y c 10-3) there is more variation of E; with M. 

Note that with the smallest number of basis functions (M=20) the error begins to 

increase rapidly, indicating that the deterministic error is no longer negligible. 

Figure 3 is the same plot as Fig. 2, but for least-squares splines. The 

conclusions to be drawn are quite different. The errors E; are generally larger (in 

the range 3-5); they are essentially independent of y, and, most importantly, they 

increase with M. For least squares, then, the choice of M is crucial. 

Figures 4 and 5 show similar plots for E;, and Figs. 6 and 7 show E;. 
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FITTING NOISY DATA 363 

1 lo-' 1 10-3 10-4 

FIG. 4: Rms error in first derivative g', e* as a function of the uncertainty y. 
1 '  

Symbols same as Fig. 2. Cross-validated smoothing splines. 

* 
Qualitatively the behavior is the same to that of eo, although the magnitudes of the 

errors can be much larger. 
a 

To emphasize one virtue of the new algorithm, Figs. 8 and 9 show E~ 

against M for cross-validated smoothing splines and for least-squares splines. For 

least-squares (Fig. 9) the error increases rapidly with M: with M = 55, the error is 

16 times that with M = 20. With cross validation, on the other hand, the error 

grows slowly with M: with M = 55 it is less than twice that with M = 20. 
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POPE AND GADH 

FIG 5: Same as Fig. 4. Least-squares cubic splines. 

It is evident that with least squares it is crucial to use a near-optimum 

number of basis functions. In nearly all applications this number is not known a 

priori, if at all. Nevertheless, we ask the question: With the optimum number of 

basis functions, how do the errors E: compare for cross validation and least 

squares? We define E,(y) to be the minimum of E ; ( M , ~ )  over all the values of M 

used. Figure 10 shows Ern against y. It may be seen that, for y greater than 

the error using cross validation is consistently and significantly less than the error 
using least squares. For very small uncertainties (y<l0-3) the two methods yield 

the same errors (with the near-optimum number of basis functions). 
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FITTING NOISY DATA 365 

FIG. 6: Rms error in second derivative g", E* ,  as a function of the uncertainty y. 
2 

Symbols as Fig. 2. Cross-validated smoothing splines. 

Bias - 

Above we have used the root mean-square errors EO to characterize the 

difference between f(x) and its approximant g(x). We can be more precise and 

differentiate between three errors: g(x) can be decomposed as 
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POPE AND GADH 

FIG. 7: Same as Fig. 6. Least-squares cubic splines. 

Here d(x) is the deterministic error, mentioned above, due to the number of basis 

functions M being insufficient to represent f(x) accurately. With go(x) denoting the 
value of g(x) obtained by least squares without random error (p = o = y = O), the 

deterministic error is 

Note that d(x) depends on M and is, of course, non-random. 
The basis P(x) is the systematic error due to the random error in the 

samples: 
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FITTING NOISY DATA 

FIG. 8: Rms error in second derivative g", E* against number of basis 
2' 

functions, M, for different uncertainties: y and o same as Fig. 1. 
Cross-validated smoothing splines. 

The remainder, r(x), is the random error which, it follows, has zero mean. 

In some applications (e.g. some Monte Carlo methods) a non-zero bias may 

be less desirable than a smaller (unbiased) random error. One reason is that 

unbiased random errors can be reduced at will by averaging results over many 

realizations. But in such a procedure the bias remains unchanged. 
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POPE AND GADH 

FIG. 9: Same as Fig. 8. Least-squares cubic splines. 

In this respect the least-squares method has an advantage in that it is 

unbiased. With some mild assumptions, it follows from Eq. (13) that the spline 
coefficients of the bias P(x) are given by 

Clearly, then, with least squares (p=O) the bias is zero. With cross-validated 

smoothing (p>O) the bias is non-zero except in particular circumstances. (For 

example, if <a> corresponds to a straight line (i.e. a curve of zero roughness) then 
C<g> - is zero.) 
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FITTING NOISY DATA 369 

FIG. 10: Minimum (over basis functions used) rms errors go, TI,  gz as functions 

of the uncertainty Y. Triangles, go; circles, E l ;  squares, S2; solid 
symbols, cross-validated smoothing splines; open symbols, least- 
squares cubic splines. 

We define the rms bias error ep by 

As before, ep is estimated by averaging over many realizations. In this case, 

however, the estimation and control of the statistical error is less straightforward. 
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POPE AND GADH 

"d 

FIG. 11: Rms bias error EP as a function of the uncertainty y. (M = 25). 

The method used (see Gadh 1987, for details) results in a statistical error of less 

than 8%. 
Figure 11 shows ED as a function y for M = 25. It may be seen that the data 

are well represented by the empirical relation 

Although all three errors (d, P and r) conmbute to the rms error Q, it should 
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FITTING NOISY DATA 371 

be noted that bias makes a small conmbution. If 4 is 2, say, and Eq. (43) holds, 

then the bias makes less than a 10% contribution to E:. 

In summary, unlike the least squares, the cross-validated smoothing 

algorithm is biased. However, the bias is quite small (10%) compared to the 

random error. 

DISCUSSION 

The algorithm described has been used extensively in Monte Carlo 

calculations (Nguyen and Pope 1984; Pope and Correa 1987; Haworth and Pope 

1987a,b, for example). It has proved completely reliable when applied to widely 

differing functions f(x), with different types of random error. We now discuss 

some observations concerning the algorithm and extensions to it. 

Rate of Convergence 

The smoothing parameter p* is determined iteratively. It is found that the 

convergence of this iteration is not as fast as desirable: typically 15 iterations are 

needed. It may be that an analytical investigation into the nature of the function 

R(p) (Eq. 23) could guide the development of a more rapidly converging algorithm. 

Variants 

Two variants of the algorithm were investigated. The first is to define the 

roughness T (Eq. 6) in terms of the third derivative g"'(in place of g"). The 

second variant pertains to the cross validation. The samples are divided in K > 2 

independent data sets (rather than just two). A spline is determined from each data 

set; and the cross error Z(p) is defined as the sum of the mean square errors 

between the spline s (s = 1,2 ,..., K) and the other data sets t (t = 1,2 ,..., K; t ;t s). 

Numerical tests were performed on both of those variants (with K up to 

12). Although the tests were not as comprehensive as those described in the 

previous section, the general conclusion is that neither variant has a major effect on 
* 

the magnitude of the statistical errors E,. Hence, on grounds of simplicity and 

computational efficiency, the basic algorithm is to be preferred. 
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POPE AND GADH 

Cross-Validation Technique 

As mentioned in the Introduction, the "leaving-out-half' cross validation 

technique used here differs from the "leaving-out-one" (Wahba & Wold 1975) and 

GCV (Craven & Wahba 1979) techniques. It has been conjectured (Wahba 1988) 

that for the present case of dense data all three methods give similar values for the 

smoothing parameter p: but it is further conjectured (Wahba 1988) that the current 

method is inferior for sparse data. 

&g&a&$ 

It was mentioned above that the discrepancies between f(x) and the spline 

approximant g(x) tend to be greatest at the boundaries x = 0 and x = L. This is 

because the first few and last few basis functions lie partly outside the interval 

[O,L]. Consequently, they are determined by fewer samples and hence have greater 

statistical error. 

It may be - as it is in the Monte Carlo applications mentioned - that some 

information is known about the function at the boundaries. General linear 

boundary conditions are 

w1 f(0) + w2 f(0) + w j  = 0 ,  
and 

0 4  f(L) + a5 f(L) + 0 6  = 0 ,  

where 0 1 ,  ..., 0 6  are prescribed constants. The splines g(x) can be constrained to 

satisfy these conditions, without affecting the structure of the algorithm. It is found 

that specifying boundary information in this way greatly improves the behavior of 

the splines near the boundaries. 

Pre-Processing 

For the case of dense data (N > 100 M,, say) the computational expense can 

be decreased by pre-processing the data ( f ) ,  xy), wy); i = I,N(S); s = 1,2). First 

the interval [O,L] is divided into N;j112 bins, generally of equal size. (The number 

RID is typically 4 times the number of basis functions.) The jth bin is centered at Zj 
and the samples falling in it are averaged to form e) and idS). Then the spline 

J 

algorithm is applied to the data @), $ = ;, , ;;(I); j = 1, R112; s = 1,2. 
J 
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F I T T I N G  N O I S Y  D A T A  373 

The principal advantage of this pre-processing is that the computational 
work required to form the coefficients B(,) and (Eqs. 15 and 17) is greatly - - 
reduced. A secondary advantage is that the sample locations T(') and T!~) coincide. 

J J 

Provided the bin width LmlI2 is small compared to the scale of variation of the 

function L/M,, a negligible deterministic error is incurred. 
A second form of pre-processing is to estimate the variance o2(x) from the 

samples, and to prescribe numerical weights wy) based, in pan, on this estimate. 

Since this process is common to many algorithms we do not elaborate on it here. 

Extension to Several Dimensions 

For the case of d dimensions (d > I), there is an obvious extension of the 

algorithm, in which there are M d-dimensional basis functions, and the roughness 
is defined in terms of V2g(d. Such an algorithm, though feasible, would be 

considerably more expensive than the one-dimensional algorithm. This is because 

the number of basis functions required increases exponentially with d (all other 

things being equal). 

More attractive, when possible, is the tensor-produced method (see de Boor 

1978). In this method the d-dimensional spline g k )  is formed by constructing one- 

dimensional splines in each of the d-directions in turn. This method has been 

implemented in two dimensions (Anand, Pope & Mongia 1988) and in three 

dimensions (Hawonh 1987). Preliminary tests suggest that good results are 

obtained by using the cross-validated smoothing algorithm in the first direction, and 

the more economical least-squares method in the remaining directions. 

CONCLUSION 

We have developed an algorithm to approximate an unknown function f(x) 

given function values containing random noise. The approximant g(x) is a cubic 

spline with a sufficient number of basis functions to accurately represent f(x). The 

basis-function coefficients are determined by minimizing a combination of the 

infidelity E (i.e. the mean-square error between g(x) and the data) and the 
roughness T of g(x), Eq. (6).  The quantity minimized x = E + pT depends on a 

smoothing parameter p. A "leaving-out-half" cross-validation technique is used to 

determine a suitable value of p. 
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POPE AND GADH 

For a simple sinusoidal test function, the performance of this method has 

been determined, and compared to that of least-squares cubic splines. The main 

conclusions from these tests are as follows. 

i) 

ii) 

iii) 

iv) 

The choice of the number of basis functions is not crucial, providing 

only that there are sufficient to represent the function f(x) accurately. 

For least-squares splines, on the other hand, the error between f(x) and 

g(x) increases rapidly with the number of basis functions, beyond 

some optimum number. 

Even if the optimum number of basis functions is used, the errors in 

the cross-validated smoothing method are substantially less than those 

in the least-squares method (except when there is little uncertainty in the 

data, in which case the performance of the two methods is similar). 

The least-squares method is unbiased, whereas the cross-validated 
smoothing method has a small bias. The magnitude of the bias is 

typically 10% of the unbiased random error. 

The method has been used extensively in Monte Carlo calculations. Its 

performance is enhanced by pre-processing the data, and by incorporating any 

known boundary information. By using the tensor product representation, the 

method has been extended to two and three dimensions. 
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