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Yesterday, we considered parabolic curves and solved most of the motivating problems.
Today, we want to extend these methods to create cubic curves. The only method we will
not directly mention is de Casteljau’s algorithm (we’ll say more about that later), but there
is an alternate though slightly different method called cubic Hermite interpolation.

8.1 Cubic Curves

We can generalize some of the constructions in the previous section to higher order curves.
One problem with using parabolas as the basic curve element for modelling is that a parabola
is a convex curve, convexity being defined as the curve lying on one one side of its tangent
lines. This means that in order to model a curve that is not convex like S-curve one must use
piecewise parabolic curves. By increasing the order of the polynomial curves that are used
one can create a simple model of non-convex curve with one curve. The simplest polynomial
curve that is not generically convex is a cubic curve. In fact, one of the reasons that cubic
curves are heavily used in geometric modelling is because cubic curves are the lowest degree
polynomial curves that are not generically convex.

Another advantage of cubic curves is that they can be joined in a C2 manner meaning that
the first and second derivatives at the point where they are joined agree, while quadratic
polynomial curves (parabolic arcs) can not. This extra smoothness factor allows one to
create a vast variety of smooth curves by joining simple polynomial curves. This smoothness
allows one to model physical phenomenon very easily with cubic curves. The position,
velocity and acceleration at one point completely determines a parabolic trajectory. This is
a direct result of motion under constant acceleration and Taylor polynomials. This means
that for motion modelling one can not model arbitrary changes in acceleration with parabolic
arcs. Therefore, quadratic curves are not suitable for modelling motion based on the laws
of physics, where motion is controlled through changing the acceleration of the particle.
However, one can use cubic arcs. Given a position, velocity and acceleration at time t = 0
then a new acceleration at t = 1, one can construct a cubic curve that satisfies these
properties (see the subsection on Piecewise Cubic Curves).

8.2 Interpolating Cubic Curves

A cubic curve c(t) = a0 + a1 t + a2 t2 + a3 t3 is naturally defined by four points. We first
consider the interpolation problem. Given four data points and four parameter values, we
proceed exactly as we did for parabolic arcs. In this section, we will only use the matrix
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formulation in this section. We defer the basis function formulation until we cover Lagrange
interpolation for the general case of higher order polynomials later in this chapter, though
we write the answer explicitly. It is worth noting that as for the data fitting problem the
parameter values for the interpolation problem may be chosen using equally spaced values,
chord length values, or centripetal spaced values.

The interpolation problem for cubic curves is to find a curve c(t) = a0 + a1 t + a2 t2 + a3 t3

that satisfies c(ti) = pi where i = 0, 1, 2, 3 for given four points pi and parameter values ti.
In the matrix formulation, we need to solve the system of equations




p0

p1

p2

p3


 =




1 t0 t20 t30
1 t1 t21 t31
1 t2 t22 t32
1 t3 t23 t33







a0

a1

a2

a3


 .

This is a matrix equation P = T A where P is the matrix obtained by using the data points
pi as row vectors, A is the matrix of coefficient vectors, and T is the matrix of powers of
the parameter values. The solution written out in long form is then obtained as




a0

a1

a2

a3


 =




1 t0 t20 t30
1 t1 t21 t31
1 t2 t22 t32
1 t3 t23 t33




−1 


p0

p1

p2

p3


 .

or in short hand A = T−1 P . Provided that all the parameter values are different, the
matrix T is invertible. The cubic curve can thus be represented as

c(t) =
[
p0 p1 p2 p3

]



1 1 1 1
t0 t1 t2 t3
t20 t21 t22 t23
t30 t31 t32 t33




−1 


1
t
t2

t3




=
(t− t1)(t− t2)(t− t3)

(t0 − t1)(t0 − t2)(t0 − t3)
p0 +

(t− t0)(t− t2)(t− t3)
(t1 − t0)(t1 − t2)(t1 − t3)

p1+

(t− t0)(t− t1)(t− t3)
(t2 − t0)(t2 − t1)(t2 − t3)

p2 +
(t− t0)(t− t1)(t− t2)

(t3 − t0)(t3 − t1)(t3 − t1)
p3.

Notice that the only changes from the quadratic case is the addition of an extra column to
the P matrix and the A matrix, and filling out the T matrix. The answer as expressed is
the basis function formulation.

Likewise one may construct the basis function representation of c(t) by determining the
cubic functions L3

i (t) such that

L3
i (tj) =

{
1 if i = j

0 if i 6= j

to write the cubic function as

c(t) = L3
0(t) p0 + L3

1(t) p1 + L3
2(t) p2 + L3

3 p3.

The advantage of the basis function approach is that it avoids solving the system directly.



8-3

8.3 Hermite Interpolation

We now consider a different type of interpolation problem. In this problem, one prescribes for
data, a sequence of points and tangent vectors at these points. This can also be considered a
method for modelling motion, as the tangent vectors can be viewed as controls as prescribing
the velocity of the particle at the given points

This form of interpolation is called Hermite interpolation, after the French mathematician
Charles Hermite. The cubic Hermite interpolation problem is to find a cubic curve that
passes through two points with given tangent vectors at these points. Geometrically, one
may view the input as four points, the initial and terminal points of each tangent vector, as
the initial point of the tangent vector is the point at which the vector is tangent. Viewing
the input of a Hermite interpolation in this form is an important observation for a designer.
In fact, Adobe Illustrator uses this type of viewpoint to draw curves with its Pen Tool. You
place the first point, then drag to the next point (this forms a tangent vector) at the first
point. The second point and tangent vector are placed in the same manner. The curve is
actually created interactively as the user places the second point and drags to create the
tangent vector. For the interaction, the program starts with a tangent vector equal to zero.
Thus creating the first curve without waiting for the user to drag to create a nonzero tangent
vector.

Cubic Hermite interpolation is therefore a more natural design tool than cubic interpolation
where the designer chooses four point that curve must pass through. In Hermite interpo-
lation, the designer chooses only the endpoints of a cubic segment and then interactively
shapes the curve as desired. This allows very easy interaction, and is the reason for the use
in Adobe Illustrator. The only problem is that it may take some time getting accustomed to
the interaction, and becoming proficient in control the curve through specifying the tangent
vectors at the end points.

p0

v0

p1

v
1

Figure 1: Construction of Curve by Hermite Interpolation

To determine the cubic curve, defined by c(0) = p0, c′(0) = v0, c(1) = p1, c′(1) = v1, we set
up the necessary equations and solve. The equations are

p0 = a0

v0 = a1

p1 = a0 + a1 + a2 + a3

v1 = a1 + 2a2 + 3a3
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Solving these equations, we find

a0 = p0

a1 = v0

a2 = v1 + 3(p1 − p0)− 2(v0 + v1)
a3 = v0 + v1 − 2(p1 − p0)

This yields with some rearranging the polynomial

c(t) = (1− 3t2 + 2t3) p0 + (t− 2t2 + t3) v0 + (−t2 + t3) v1 + (3t2 − 2t3) p1

The functions H3
0 (t) = (1 − 3t2 + 2t3), H3

1 (t) = (t − 2t2 + t3), H3
2 (t) = (−t2 + t3) and

H3
3 (t) = (3t2 − 2t3) are graphed below.
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Figure 2: Cubic Hermite Basis Functions Hi03(t)

Notice the symmetry of the functions H3
0 and H3

3 about the line t = 1
2 , and the symmetry

of the functions H3
1 and −H3

2 about the line t = 1
2 .

8.4 Piecewise Cubic Curves

The solution to Hermite interpolation allows one to chain together cubic curves to obtain
piecewise cubic curves. One can also use the same method for constructing piecewise linear
curves and the first method for piecewise circular curves. Specifically, construct a piecewise
cubic curve from a sequence of 3n + 1 points to be interpolated. Let p0, p1, p2, p3, p4, · · · ,
p3n and construct a cubic curve by interpolation from the points p3i−3, p3i−2, p3i−1, p3i for
i = 1, 2, · · · , n.

An advantage of cubic Hermite interpolation is that it is easy to construct a smooth piecewise
cubic curve. A second advantage of cubic Hermite curves that is important in geometric
design is the symmetry in the data provided, at each point there is a tangent vector. This
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allows one to modify either the point or the tangent vector to affect a change in the curve. In
the straight interpolation method, one can only modify points that the curves pass through.
The effect of changing any one point can be hard to predict especially changing the joint
points p3i.
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Figure 3: Hermite Spline Construction

The final advantage of the cubic Hermite curves is that the admit very simple piecewise
descriptions. Let the given data be p0, v0, p1, v1, · · · , pn, vn so that we have n cubic curves.
Each individual cubic curve has the description

ck(s) = H3
0 (s) pk + H3

1 (s) vk + H3
2 (s) vk+1 + H3

3 (s) pk+1

where 0 ≤ s ≤ 1. The piecewise description can then be written by letting s = t− k, as

c(t) =





c0(t− 0) for 0 ≤ t ≤ 1,

c1(t− 1) for 1 ≤ t ≤ 2,
...

...,
ck(t− k) for k ≤ t ≤ k + 1,
...

...,
cn−1(t− (n− 1)) for n− 1 ≤ t ≤ n

One can easily alter the above description allowing the individual points to have prescribed
parameter values, by letting s = (t − tk)/(tk+1 − tk) for the kth curve. We used equally
spaced integer values for simplicity.

Piecewise cubic curves constructed through Hermite interpolation are guaranteed to be C1

(parametrically smooth and therefore also G1 geometrically smooth). One can also modify
the construction of cubic Hermite curves to construct piecewise cubic curves that are geo-
metrically smooth but are not parametrically smooth (see exercises). We note that it is also
possible to easily construct piecewise cubic curves that are C2, that is have two continuous
derivatives. A simple method to construct a C2 curve is to construct parametrically pre-
scribing at t = 0 the point, the first derivative, and the second derivative then prescribing
at subsequent t values the value of the second derivative. We thus have the interpolation
problem find a cubic curve that satisfies c(0) = p0, c′(0) = v0, c′′(0) = a0 and c′′(1) = a1

which has solution
c(t) = p0 + v0 t +

1
2

a0 t2 +
1
6

(a1 − a0) t3.

This can continued knowing c(1) = p1 = p0 + v0 + 1
3 a0 + 1

6 a1, c′(1) = v1 = v0 + 1
2 a0 + 1

2 a1,
c′′(1) = a1 and prescribing c′′(2) = a2.
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There is a problem with this method of constructing C2 piecewise cubic curves. The method
is numerically unstable. Round-off errors in the computations will accumulate and greatly
affect the shape of the curves. In particular, the points pn = c(n) for integers n ≥ 1
where the second derivatives are prescribed will vary greatly with small changes in the data
provided. This means that one is unable to predict the shape of the curve from the given
information. This is similar to the fact that Taylor polynomials of a function only provide
good approximations locally, at distances away from the point where the derivatives are
known one can not accurately predict the value of the function.

8.5 Fitting Data to Cubics

Fitting data to a cubic is much the same as fitting data to a quadratic, especially using the
matrix version of least squares. The set up is exactly the same the only difference is the
number of variables in the problem. Consider the following example.

Find the cubic function that is best fits the data in the table

x 1.0 2.0 1.5 4.0 3.0 2.0
y 2.0 3.0 3.5 2.5 0.0 0.5

Since there are no given parameter (t) values, we will use equally spaced values with spacing
∆t = 0.5 starting with t0 = 0. This is an arbitrary choice, different choices will yield possibly
different curves. Therefore, we need to solve the matrix system




1.0 2.0
2.0 3.0
1.5 3.5
4.0 2.5
3.0 0.0
2.0 0.5




=




1.0 0.0 0.0 0.0
1.0 0.50 0.25 0.125
1.0 1.0 1.0 1.0
1.0 1.50 2.25 3.375
1.0 2.0 4.0 8.0
1.0 2.50 6.25 15.625







a0

a1

a2

a3




Using least squares on the above system P = T A we have the solution A = (T tT )−1T tP as

ai x y
a0 1.12 1.82
a1 -0.30 6.03
a2 2.48 -5.90
a3 -0.89 1.30

Different solutions arise when different parameter values are used. For instance, in the
graph below, the dark curve is the solution above, the medium gray curve uses chord length
parameters t0 = 0 then ti+1 = ti + di where di = ‖pi+1 − pi‖, and the light gray curve uses
centripetal parameters t0 = 0 then ti+1 = ti + d

1/2
i .

8.6 Exercises

1. (Computational) Given the data below

t x y
0.0 1.0 2.0
0.3 2.0 3.0
0.6 4.0 4.0
1.0 5.0 2.0



8-7

Figure 4: Data Fitted with Different Parameter Values

(a) Find the cubic curve that satisfies the above data.

(b) Find the Hermite data that creates the same curve.

2. (Interactive) Complete the interactive exercises associated with cubic Hermite curves.

3. (Computational/Thought) Sketch the piecewise cubic Hermite curve with the data in
the figure below.
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Figure 5: Sketch the piecewise cubic Hermite curve with this data

4. (Computational) Given the data
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c(0) = [1, 2]
c′(0) = [1, 0]
c′′(0) = [1, 1]

c′′(1) = [−1, 1]
c′′(2) = [1, 2]

(a) Find a piecewise circular curve that satisfies this data.

(b) Repeat the above problem using c′′(0) = [1.01, 0.99], c′′(1) = [−1.01, 0.99], and
c′′(2) = [0.98, 2.01].

(c) How does c(1) and c(2) differ from the curves in the previous two parts of this
exercise.

5. (Computational) Given the data

x 1.2 0.8 1.5 1.8 3.0 3.0 2.5
y 2.2 2.5 3.2 3.0 4.0 2.0 1.8

(a) Find the best fit cubic to the data using equally spaced parameters with increment
∆t = 1.0.

(b) Find the best fit cubic to the data using chord length parameters.

(c) Find the best fit cubic to the data using centripetal spaced parameters.

(d) Plot each of cubics generated above, which is provides the best fit to the data in
your opinion. Why?


