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David L. Finn

Today, we want to continue our discussion of Bezier splines concentrating on creating C?
Bezier splines, twice differentiable piecewise defined curve from cubic Bezier curves. Con-
structing a twice differentiable piecewise defined curve from cubic Bezier curves that has
the same properties as Bezier curves (endpoint interpolation, prescribed tangent lines at
the endpoints, symmetry, convex hull property and variation diminishing) and has the local
control of splines (moving one control point only affects a portion of the curve) requires
significantly more work that the extension from C° splines to C! splines.

The first question that should be considered is what is the advantage of looking at C?
curves. For motion problems (animation or motion planning problems), C? curves are nec-
essary to ensure the acceleration is continuous, a desirable property. One normally wants
the acceleration bounded and continuous with bounds on the derivative of the acceleration.
For designing parts, C? curves ensure the curvature is continuous which is useful in geomet-
rically understanding the curve. The exact nature of curvature in describing a curve will be
discussed tomorrow.

18.1 (? cubic Bezier splines

We saw in our discussion of Hermite curves that one can create a C? curve from quintic
curves. We defined quintic Hermite curve by specifying the first and second derivatives at
the joint points. However, as we saw controlling the shape of the curve in this fashion is not
entirely intuitive. In this subsection, we will look at how to join two (or more) cubic curves
together in a C? fashion. This is possible because we will determine the location of the joint
point instead of specifying its location as in Hermite curves. We will begin by considering
the joining of two cubic curves, and then extend to consider the joining of more curves.

Given control points for two cubic Bezier curves pj, pi, p3, p and p3, p?, p3, p3. We first need
p3 = p? so the curve is continuous, and next we need pi—ps = p?—p2 or pi = p3 = (p?+pd)/2
so the piecewise curve is differentiable (the derivative at the joint must be equal). The new
condition so the curve is C? is the equality of the second derivative at the joint point. The
equality of the second derivative is equivalent to the equality a condition on the equality of
the second differences. In other words, pi — 2pd + pl = p3 — 2p? + p3. Manipulating this
equation, we have

(p5 —p3) — (ps — p1) = (93 — p1) — (PT — 1Y)
(p5 —p3) + (B} —p3) = (p3 — p1) + (P3 — PY)
2(p3 — p3) = 2(p} — p3) = (p5 — p1) + (5 — P7)
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To understand the manipulation above, we look at in terms of a vector equation, which can
be best understood through the diagram below.

Figure 1: A vector view of the equality of second differences

The diagram above implies that the segment S; formed by pi and p? is parallel to the
segment Sy formed by pi and p3. Moreover, the length of Sy is twice that of S;. Therefore,
the lines 1 and Iy through pl, pd and p?, p2 intersect at a point X. The triangles pi Xpl
and p} X p3 are similar. Thus p} is the midpoint of the segment formed by p} and X and p?
is the midpoint of the segment formed by p3 and X. (See diagram below)

S, is parallel to S;
and twice the length of S

P3

Figure 2: Geometric Properties of Equality of Second Differences

Therefore, to create a C? curve with two cubic curves, one needs only the five points p}, pi,
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a

p=(1/2) dg + (12) 4,

p,~(112)d_1 + (112)
2 ! b ps=(112) py + (112) p,

d; =p;s

d;=p

ds=pg

Figure 3: Constructing a C? Bezier spline of two cubic segments

X, p% and p3. This is because

1 1
1 1
- -
P2 = 5P + 2X
1 1
2 1
= — —
D1 2X + oP2
1 1
py=ph = 51’% + 51’%

However, it is more convenient to use other notation. But these are the correct points to
provide, so that the properties of Bezier curves (endpoint interpolation, prescribed tangent
lines, symmetry, convex hull property and variation diminishing property) are preserved in
our construction of C? Bezier curve.

For creating a C? cubic Bezier spline with two segments, one gives 5 points d_», d_1, do, d1,
dy and defines the control points pg, p1, p2, - -, ps for a CY Bezier spline of two segments
as follows. Define

po=d_2 and pg=dap1 =d_1 and ps =d;

then 1 ) 1 1
p2 = Edfl + ido and pg = §d0 + §d1
and finally
1 n 1
b3 = 2]92 2P3~

Notice the symmetry of the algorithm, so reversing the order of the spline control points
d; we get the same curve. We also note that we have interpolation of the first and last
control points, and the tangent lines at the first and last control points are given by the
lines d_od_1 and dids.

To extend this beyond two cubic segments requires a different point of view. The construc-
tion is slightly more complicated. We specify the spline by L + 3 spline control points, d;
with 4 = —2,—1,0,1,--- , L. This is again an improvement over C° and C'! splines in terms
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of the number of control points needed, as each additional segment requires one additional
point. In the algorithm given below, we let p; be the control points for the piecewise cubic
Bezier curve that makes the spline. Recall, each individual cubic curve in the spline is
defined using the control points ps;_3, p3i—2, p3;—1 and p3; where ¢ = 1,2,--- | L with L the
number of cubic curves in the segment. The reason for starting the index for d; at —2 is
purely so the last index is L, and determines the number of curve segments.

For a C? cubic spline with 3 segments, things are slightly more complicated. The First
segment is defined by d_s, d_1, dp, and d;, the middle curve is defined by the points d_1,
dy, d1 and ds, and the last segment is defined by dy, d, ds, and d3. The trick is getting two
control points out of the segment dy and dy. This is accomplished by dividing the segment
into equal thirds, to get the control points by and bs. The other control points are defined
similar to for a spline with 2 segments. First, we set

po =d_s, pr=d_q, pg = da, Py = d3.
Next, we define
p2 = 5d_1 + 3do, pr = 3d1 + 3da.
Then, we define
pa = 2do + 3di, ps = 3do + 3da.
Finally, we set
D3 = %pz + %Pz;, De = %Ps + %pr

See diagram below

d,

Figure 4: A C? Begzier spline of three cubic segments

In general, given control points d_o, d_1, dgy, d1, ---, dr, we define the piecewise Bezier
control points as follows. First, we set

po =d_a, p1=d_1, P3r—1 =dr_1, par =dr.

Next, we define
p2 = %d_lJr%do, P3L_2 = %dL—2+%dL_1.
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Then, we define for i =1,2,--- , L — 2 the points
Psit1 = 5di—1 + 3di  p3iye = 5di_1 + 3d;.
Finally, we set for i = 1,2,--- ,L — 1 the points
_ 1 1
D3i = 5DP3i—1 + 5P3i+1-

See diagram below.

dy

Figure 5: A C? Bezier spline of five cubic segments

Exercises

1. Play with the applet: Creating C? (cubic) Bezier Splines with a uniform knot sequence.
Notice the difference between a C' Bezier spline and the Bezier curve with the same
control points. In particular, play with how the control points affect the shape of the
curve.

2. Determine the conditions required on the control points to create a closed C? Bezier
spline.

3. Use the above conditions to create a C? approximation to a circle.

4. Determine the conditions needed to define a C? cubic Bezier spline using a nonuniform
knot sequence.



