MA 323 Geometric Modelling
Course Notes: Day 20
Curvature and G2 Bezier splines

David L. Finn

Yesterday, we introduced the notion of curvature and how it plays a role formally in the
description of curves, as a geometric second derivative. Today, we want to continue this
discussion and construct curves that have second order continuity. In this manner, we derive
the curvature of a cubic Bezier curve at the endpoints only. It is worth noting that since
cubic curves are smooth curves, the curvature (when defined, as it is possible to construct
a cusp with a cubic curve) is continuously varying. In the construction of a G? spline, it is
therefore only necessary to match the curvatures are the endpoints.

20.1 G? Bezier splines

A G? spline is a piecewise cubic Bezier curve which is G' and the derivative is G'. They
are much more difficult to describe analytically, through control points and the functional
representation. Basically, we want to reparameterize the curve with respect to the arclength
parameter and show the curve is C? respect to the arc-length parameter, which means the
curvatures and the unit tangent vectors must be equal at the joint point.

Let pj, pi, p3, pi and p3, p?, p3, p3 be the control point of two cubic Bezier curves. We
want a continuous curve so p; = pi. We want the curve G, so pi = p? lies on the
segment pip?. Further, let d be the intersection of the lines pipl and p?p2, a C? spline
control point controlling the location of the joint point. To derive the conditions for G2,
let r_ = ratio(pl,pi,d), ry = ratio(d, p?, p3), and r = ratio(ps, pi, p?). We show below that
the curvatures at p3 = p are given by

. darea(py,p.p3) _ 4area(pg, pi, p3)

and Ky =
3 lpz —p3I° 3 |t —pl®

from the control points pj, pi, p3, p3 and p3, p3, p3, p3 respectively. Using the below figure,
if the curvatures agree then
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which yields the G2 condition
2 =r_r,.
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For a G? spline, we can place the control points p; and p? anywhere, and then the joint
point p} = p? is determined by the G? condition.

20.2 Curvature Calculations

We want to discuss the calculations and the derivations involved with the establishing the
conditions for a G? spline. First, we want to consider the curvature of a cubic Bezier curve
at one of the endpoints. This can be determined geometrically from the control points.

Recall from calculus, the curvature of a curvature is given by the normal component of

acceleration as
a-N

R =
Iv][?
where a is the acceleration d?c/dt?, N is the unit normal vector, and v is the velocity vector.

Our definition of curvature of a plane curve agrees with this definition except that we have
a different definition of a normal vector vector of a plane curve.

Pi
[ ]

P2

Po

Kk at py = (4/3) area(p0,p1,p2) / [p1 —p0|3
Natp;

scaled acceleration vector at p

Figure 1: Curvature calculation for a cubic Bezier curve at pg

For a cubic Bezier curve with control points pg, p1, p2, p3, the acceleration vector at pq is
6A3p and the velocity vector is 3A}p, where A3p = (pa —p1) — (p1 —po) and Alp = p1 — po.
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We can not write the unit normal vector N at py in terms of the control points, but that is
unneeded. It is important that the dotproduct of A2p with N is equal to the dotproduct of
p2 — p1 with N, because p; — pg is parallel to T and therefore orthogonal to N. Thus, the
area of the triangle with vertices pg, p1, p2 is equal to

area(pop1p2) = %|(p2 —p1) - Nllp1 = poll
as (pa — p1) - N is the height of the triangle popips. We thus have that

12area(pop1p
a‘NZGA%p'NZG(pz—m)'N:—( oPLE2)
1 — poll

and the curvature at pg is then

_ 1231“@3(?0171102) _ % area(pgppo)
9|p1 — pol? 3 [lp1 —pol?

since v = 3(p1 — po). Likewise the curvature at p3 is given by

P area(p1p2ps)

3 llps —pal?

which yields the two curvature formula that gave above. We note that these formula can
only be used at the endpoints, since they were derived purely from the special form of the
velocity and acceleration vectors at the endpoints.

20.3 Control Points for G? Splines

In creating a G? spline using two segments, we give five control points d_», d_1, do, d; and
ds, and define a C° cubic Bezier spline, similar to the construction of a C? Bezier spline.
The control points by, by, ba, bz (the joint point), by, b5 and bg of the C° Bezier spline are
given by

bo=d 2, bi=d_1, bs=di, bg=ds

and then
bgz(l—t_)d_l—l-t_do b4:(1—t+)d0+t+d1

where r_ = ¢_/(1 —t_) is a control specifying the location of by on the line d_;1dy and
ry =t /(1 —t4) is a control specifying the location of by on the line dod;. The quantities
r_ and r4 are the ratios of ratio(d_1, b, dy) and ratio(do, b4, d1); the ratio of three collinear
points with the middle point B between the endpoints A and C'is defined by ratio(4, B, C) =
|CB|/|AB|. The joint point b3 is then given by

b3=(1—t)bg+tb4

where r = t/(1 — t) must satisfy 72 =r_7r .

To show that 72 = r_r,, we begin by noting that for d_,, d_1, do, dy, da to define a G?
spline we must have
area(pipaps) _ area(pspaps)

Hp3—p2||3 - ||p4—p3||3’

or

area(p1p2p3) ||p3 - p2||3
(*) =

area(pspaps)  |lpa — psl|®’
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Figure 2: Determining the control points by ratios

The ratio of the areas in (*) (the left-hand side of the equation) is given by

|(p2 — p1) - N|llps — pal
|(p5 —p4) : N| ||p4 —P3||

but ||ps — p2|| = tllpa — p2|| and ||ps — ps|| = (1 — ) ||[p4 — p2||. Thus the ratio of areas is
equal to

pa—p) NIt [dy—d )N
|(ps — pa) - N| 1=ty [(do—di)- N
since po —p1 = pa—d_1 =t_ (dg—d_1) and p5 —ps = (1 —t4) (d1 — dp) To simplify further,
we look at the triangle padops, and note that (dg — p2) - N = (dop — ps) - N (height is equal).
Therefore, since (dy — p2) = (1 —t_)(dg — d—1) and dy — py = t4(do — d1), we get
(do—pz)‘N (].—t,) (do—dfl)'N

(do—p4)~N7 t+ (do—dl)']v7

and thus
(dy—d_1)-N _ ty
(do—dy)- N 1—t_°

Therefore, the ratio of areas in (x) is

ot
r +
T—t,1—t_

=7rr_rg

and the right-hand side of (x) simplifies to 3 which yields 72 = r_r,.
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P4=(1-t,) dg +t, ps

(I-t) pl +t dg=p, p3 ps=d;

p3=(1-)pytpy

p1=d,

Figure 3: Determining the control points for G2 Bezier spline

Exercises

1. For the cubic Bezier curve with control points pg = [0,0], p1 = [1,1], p2 = [2,1],
p3 = [3,1], compute the curvature at pg and p3

(a) Using calculus k = (a- N)/|v|?> where v is the first derivative and a is the second
derivative of the curve.

(b) Using the formula x = 4 area(pipaps)/|ps — p2||?

2. Complete the interactive exercises associated with the applet G? Bezier splines.

3. For a C° Bezier spline of two segments with a non-uniform knot sequence determine
the conditions for the curve to be joined in a C? manner, and then determine the
location of the C? Bezier spline control points d_s, d_1, do, d1 and do. Do you believe
that this is the same construction as a G2 Bezier spline of two cubic curves.



