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David L. Finn

We have considered over the last couple of days, C°, C' and C? Bezier splines, that is
composite Bezier curves (piecewise defined curves with component arcs as Bezier curves) that
have functional continuity. Today, we want to weaken these conditions to pure geometric
information, as the specification of C* curves requires the use of the parameterization of the
curve to place the control points for the requisite Bezier curves. As most of you probably
noticed and were to show in some of the exercises, one can obtain a C° Bezier spline that
looks smooth by placing the control points ps; anywhere on the line segments ps;_1p3;+1, not
necessarily at the midpoint as required for a C! Bezier spline. The point ps; does have to be
between ps;_1 and ps;41 to appear smooth. Such curves can be shown to be parametrically
smooth by choosing the appropriate non-uniform knot sequence, as you were requested to
do in the exercises. However, it is more convenient to view the construction as constructing
splines that are geometrically smooth, G* Bezier splines.

Theoretically, to state results and understand the significance of the choice of a non-uniform
knot sequence in geometric terms using only the local parameters for each individual Bezier
curve instead of the global parameter of the spline, it is useful to look at the geometry of
curves. This means the differential geometry of curves; geometric results obtained by the use
of calculus. In addition, to understanding the construction of G* splines, understanding the
differential geometry of curves will yield other geometric methods for measuring closeness.

19.1 Differential Geometry of Plane Curves

In this section, we discuss the geometry of plane curves, and use the geometry of plane
curves to judge the “goodness” of an approximation of a curve by a Bezier Curve and a
Bezier Spline. The geometry of a plane curve means the curvature of a plane curve, as the
fundamental theorem of plane curves states that given a continuous curvature function x(s)
there is a unique curve (up to translation and rotation) parametrized by arc length having
curvature x. The fundamental theorem of plane curves also gives us a method for judging
whether two curves are close. If the curvature functions are close and the curves are aligned
(pass through the same point and have the same tangent). This theorem provides us with
a very good mathematical method to judge the closeness of two curves. Curvature is also
used in fairing curves, that is smoothing curves.
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19.2 Geometry of Plane Curves

Given a parametric plane curve ¢(t) which we interpret as the position of a particle at time
t, the first derivative

represents velocity vector of the particle and the second derivative (the derivative of the
derivative) represents the acceleration vector of the particle. These are the interpretations
of a curve through motion. They mean little geometrically, and for our purposes in this
section they are meaningless. This is the difference between a road, and the position of a
car on the road. Geometrically, the path of the car is road. But the road itself, does not give
the position of the car. Geometrically, and for geometric design purposes, we are interested
in the construction of the road, not the position of the car.

The first derivative does provide some geometric information if it is nonzero. The first
derivative gives the tangent line to the curve (a geometric interpretation of the derivative).
The tangent line is geometrically what we want to consider as the first derivative. More
specifically, the first “geometric” derivative is the unit tangent vector T'(¢) of a curve, which
we define as

c(t)
T(t) =
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where || -] is the length of the vector. This requires that we have an orientation of the curve

(a direction of measurement or motion), to define the derivative. In fact, the unit tangent
vector is just the derivative with respect to arc length, that is
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where s is the arc-length parameter of the curve. The arc-length parameter is defined by
computing the arc-length of the segments of the curve. Recall the arc-length of a curve is

defined to be ,
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where a = tg <t < -+ <t, =0band |At|| = max(t; — to,ta —t1, * ,tn — tn—1).

The second “geometric” derivative of a curve is the curvature. The derivative of the unit
tangent vector T with respect to arc-length is the curvature vector. To define the curvature
(a function), we first choose a consistent normal vector for the curve. Given a tangent line,
there is a well defined normal line (a line perpendicular to the tangent line that passes
through the given point on the curve - see diagram below). The unit normal vector N ()
to a curve is chosen to be a vector on the normal line such that the vectors 7' and N form
a right-handed basis of the plane. This means that considered as a list of vectors [T, N],
the vector N = (=T5,T1) where T = (11,7%) in an orthogonal coordinates system. The
curvature k is defined to be the multiplicative factor s such that

dr T'(t)

— = = k(t) N(t).

ds @)l
We remark that this definition of curvature is different than the standard definition of
curvature in calculus. However, the absolute value of the curvature is the reciprocal of the
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circle of curvature

Figure 1: Tangent, Normal, and curvature of a curve

radius of curvature or radius of the best-fit circle to a curve. The sign only tells which
direction the curve is turning.

The principal difference between this definition of curvature and the definition that is most
calculus textbooks is that the above definition allows the curvature to be signed. In this
definition, we have positive curvature and negative curvature. The sign determines the
direction of turning. If the curvature is positive then the curve turns in the direction of
the unit normal vector and if the curvature is negative then the curve turns in the opposite
direction of the unit normal vector, see diagram below. The advantage of this definition is
that it allows us to determine a curve solely in terms of its curvature.

19.3 Fundamental Theorem of Plane Curves

The importance of curvature is given by the fundamental theorem of plane curves.

Theorem. Given a continuous function k(s). There is a unique curve c(s) parameterized
with respect to arc-length (unique up to a translation and a rotation) whose curvature is
given by k.

This result follows directly from solving the system of differential equations ¢/(s) = T'(s),
T'(s) = k(s)N(s), and N'(s) = —k(s)T(s). The uniqueness of the curve is given since one
can choose an initial point ¢(0) = o and an initial tangent vector T(0) = vy. The choice of
initial normal vector N(0) is determined by the choice of initial tangent vector.

Curvature Calculations

Given a parametric representation of a curve ¢(¢), in order to calculate the curvature of ¢,
it is useful to have formulas without using arclength parameters. These calculations involve
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negative curvature at this point
curve is turning away from normal
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somewhere in this region
the curvature is zero = geometric
meaning of inflection point

)

positive curvature at this point
curve is turning towards normal

Figure 2: Difference in signs of curvature

differentiation of vector valued function and it is useful to use the standard rules in calculus
of vector valued functions to perform these calculations. We will not go into the details of
these calculations today. You should review the necessary calculus, which will be used in
the following sections. The curvature calculations will be reviewed in the context of the
calculations needed calculating the curvature of a Bezier curves.

Closeness of Approximations

The importance of curvature for our purposes is that curvature provides a measure of the
closeness of two curves. This means in rough terms if two curves have curvatures (as
functions of arclength) that are close then the two curves are approximately the same as
long as the curves agree at point and point roughly in the same direction. It is important
to note that the curvatures must be compared with respect to arc length in order to get
closeness of the two curves.

Previously, we considered two curves to be close if they were close in distance. This meant
that the both curves lied within an e neighborhood of each other (see figure below). This
is a crude form of closeness for it does not account for the variation of the curve (how the
two curves intertwine). To account how the curves intertwine, one needs to have not only
the curves close but the tangent vectors close at corresponding points. The next measure
of closeness is to have the curvatures close together, the tangent vectors close together and
the curvatures close together. The fundamental theorem of plane curves essentially says if
the curvatures of two curves are close then the curves are close in distance and in tangents
(up to a rotation and translation), which means that if one can base closeness off a single
calculations.
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two curves close in distance (G and
close in tangents (G1), but apart in
curvature (GZ)

two curves close in distance (GO)
but far apart in tangents (Gl)

Figure 3: Notions of closeness

Differences Between Notions of Closeness

We will be more specific about these notions of closeness later when we will give complete
details in the calculations, and computing whether two curves are close. Today, we want
to concern ourselves with the general concepts and the general idea. In the exercises, you
are to use the notion of curvature and the ideas of when two curves are close to attempt to
approximate curves and create curves.

19.4 Geometric Continuity

In this section, we want to discuss piecewise Bezier curves that are geometrically continuous.
A plane curve is G! if the tangent line is defined everywhere, meaning the unit tangent
vector T'(t) is continuous, and a plane curve is G? if it is G and the curvature of the curve
is continuous. The notation G* represents geometric continuity rather than the functional
continuity represented by C*. In particular, G¥ means kth order geometric continuity rather
than C* which means kth order functional continuity. Recall that functional C' continuity
means the derivative is well-defined at each joint point. G' continuity is slightly weaker
and means that the tangent line at each joint point is well-defined. This means that every
curve that is C! continuous is G' provided the unit tangent vector is well-defined, and also
every curve that is C? will be G2 provided that the unit tangent vector is well-defined for
the curve.

19.5 G' Bezier splines

The control points pg, p1, P2, P3, Pa, P5, Pe of two cubic Bezier curves that are joined in a
G fashion must have p3 somewhere on the line segment pops. The joint point can be any
point on the interior of the line segment not just the midpoint. This is because the unit
tangent vector at ps is equal to

P3 — D2 P4 — P3

Hps —p2| B (P4 —P3H

where ||z — y/|| is the distance between x and y, which places no restriction on the placement
of p3 other than that it is between ps and ps. See the diagram below.

It is hard to tell the difference between a C'' and G spline by looking at them. The difference
is that G! curves are more flexible, you have extra “degrees of freedom” when designing
with G' curves rather than with C! curves. However, geometrically one can not see the
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Figure 4: Joining of two cubic Bezier curves in a G fashion

difference, as you can not see the parameterization of the curves to detect the difference
between the curves with out knowing the control points. For instance, look at two curves
below. Can you tell which is the C' curve and which is the G' curve?

Figure 5: Which is the C' Bezier spline and which is the G Bezier spline

The splines are given below with the control points for the piecewise Bezier curves that
define them. You should now be able to tell which is the C' spline and the G' spline,
knowing that C' curve has the joint points ps; the midpoint of the segments ps;_; and
P3it1-

19.6 Bezier Control Points for a G' splines

To create a G' spline, we still give 2L + 2 control points d_y, dg, di, ---, doy, to define
the curve. But now, we also need to provide a method for choosing the joint point. The
standard method is to use a knot sequence ty < t; < - < tr, a set of L + 1 numbers which
we use to define the joint points. The control splines for the piecewise Bezier curve is given
are given by first setting

po=d_1, p1 = dp, p2 = dy
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Figure 6: The C! Bezier spline and G! Bezier spline

and
P3i+1 = da;, P3i+2 = d2i41
where i =1,--- ,L — 1, and
p3r = dar.
The joint points ps;, i = 1,--- , L — 1 are now given using the knot sequence by setting

ti+1 — ti > ( ti - tifl )
p3i=——""—|P3ic1+ | ——— | P3it1-
’ (ti+1 —ti1 ’ tiv1 —ti—1 o

The knot sequence is used to specify the ratio of the points ps;—1, p3i, Psi+1, that is the
barycentric coordinates of the point ps; in terms of the points ps;—1 and ps;41.

To understand the last displayed equation in terms of barycentric coordinates, it is useful
to note that the above formula is designed to show that the numbers [t;_1,¢;,¢;+1] on the
number line are associated to the points [ps;_1, psi, P3i+1] so that the barycentric coordinates
of t; written in terms of t;_; and ¢;41 is equal to the barycentric coordinates of ps; in terms
of p3;—1 and p3;. Noting that

(c—b)a+ (b—a)e=ca—ba+bc—ac=>b(c—a)

and therefore

c—b b—a
a+ c=b.
c—a c—a
We thus have y ; _
i+1 — i — ti—1
St =
tiv1 —tic1 tivr —tic1 ’

usinga =t;—1,b=1;, c=1t;41.

REMARKS: (1) If the sequence ty < t; < tg < --- < tr is uniform, meaning t; — tg =
to —t; = -+~ =ty —t_1, then the curve will be C!. (2) If you reparameterize the curve
with respect to arc-length the curve will be C''. This is really what G! means, differentiable
with respect to the arc-length parameter.

19.7 Functional Representation for a G' Spline

The functional representation for a G spline is slightly different than the functional repre-
sentation for the piecewise Bezier curve with the control points. The knot sequence has a
secondary use other than defining the ratios of the joint points. The knot sequence defines
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Figure 7: Barycentric equivalence of [t;—1,t;,t;+1] and [psi—1, Psi, P3i+1]



19-9

the values of the parameter for each curve segment. The global parameter for the curve ¢
ranges between ¢y and t7,, so a G spline will be represented by b : [tg,t;] — E™, and each
segment will be defined on an interval [¢;_1,t;].

Let tg < t1 <ty < --- < tr bethe knot sequence and pg, p1, p2, - - -, p3r be the control points
for the piecewise Bezier curve. The functional representation is given by defining a local
variable for each segment. The local variable for the ith segment is s = (t —t;-1)/(t; —ti—1),
which ranges between 0 < s < 1. Therefore, in the local variable s, the ith segment is then
given by

B§(s) psi—s + B} (s) psi—2 + B3(s) psi—1 + B3 (s) ps;.

In the global variable ¢, we have by substituting

BY(= ) psis + B (== ) psi—2 + B3 (=52 psi—1 + B3 (7=1=2) pai.

The global variable ¢ ranges between ¢;_; and ¢; for the ith segment.

19.8 Exercises
1. Complete the interactive exercises associated with the G' Bezier spline applet.
2. Given the G' control points below, construct the control points for the C° Bezier
spline using the knot sequences, and then sketch the spline.
(a) tOZO,tlzl,t2:2,t3:5
(b) to=0,t1 =2,t5=4,t3=6
(C) tozo,tlzl,t2::37t3:4

d

Figure 8: Construct the G' spline from these control points

3. Show that with respect to the global parameter ¢ defined through the knot sequence
a G Bezier spline is actually C*.



